

Revised Report

Performance Evaluation of Phase II In Situ

Enhanced Anaerobic Bioremediation Treatability

Study

Signetics Site

Sunnyvale, California

Submitted to:

U.S. Environmental

Protection Agency, Region 9



Submitted J. Wesley Hawthorne, P.E., P.G.

by:

Reference:



27006-08-9016

Date:



5 August 2022

Locus Technologies 299 Fairchild Drive Mountain View, CA 94043



(650) 960-1640



locustec.com



# Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| John W. Haute       | 08/05/2022 |
|---------------------|------------|
|                     |            |
| J. Wesley Hawthorne | Date       |

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (4-Aug-22)



# Table of Contents

| Certification                                             |     |
|-----------------------------------------------------------|-----|
| List of Tables                                            |     |
| List of Figures                                           | v   |
| List of Appendices                                        | vi  |
| List of Acronyms and Abbreviations                        | vii |
| 1 Introduction                                            | 12  |
| 1.1 Site Background                                       | 12  |
| 1.2 Site Hydrogeology                                     | 14  |
| 2 Purpose                                                 | 15  |
| 3 Summary of Field Activities                             | 17  |
| 3.1 Injection Implementation                              | 18  |
| 3.2 Post-Injection Monitoring                             | 20  |
| 3.2.1 Groundwater Monitoring                              | 21  |
| 3.2.2 Soil Vapor Monitoring                               | 24  |
| 3.3 Deviations                                            | 27  |
| 4 EAB Performance Results and Discussion                  | 28  |
| 4.1 Data Quality Results                                  | 28  |
| 4.2 Baseline TCE Conditions                               | 29  |
| 4.2.1 Well Groupings                                      | 29  |
| 4.2.2 Radius of Influence                                 | 30  |
| 4.2.3 Radius of Influence Based on Groundwater Elevations | 31  |
| 4.3 Delivery Techniques                                   | 33  |
| 4.3.1 Pressure and Flowrate Delivery                      | 33  |

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phaseII\12\_revised\_EAB\_Eval\_report\Performance\_fleport\_revised\_EPA\_clean.docx (5-Aug-22)



| 4.3.7 | 2 Fluid Acceptance Capacity       | .35 |
|-------|-----------------------------------|-----|
| 4.4   | Total Organic Carbon              | .36 |
| 4.4.  | 1 TOC Retention Time              | .36 |
| 4.4.  | 2 TOC Concentration Trends        | .39 |
| 4.5   | Volatile Organic Compounds (VOCs) | .41 |
| 4.5.  | 1 TCE Mass Removal                | .42 |
| 4.5.7 | 2 Concentration Trends            | .43 |
| 4.5.3 | 3 VOC Stalls and Rebounds         | .51 |
| 4.6   | Redox conditions                  | .52 |
| 4.6.  | Oxidation Reduction Potential     | .53 |
| 4.6.7 | 2 Dissolved Oxygen                | .54 |
| 4.6.3 | 3 Nitrate                         | .56 |
| 4.6.4 | 4 Ferrous Iron                    | .56 |
| 4.6.  | 5 Sulfate and Sulfide             | .57 |
| 4.7   | Dissolved Gases                   | .58 |
| 4.7.  | 1 Carbon Dioxide                  | .58 |
| 4.7.  | 2 Dissolved Hydrogen              | .60 |
| 4.7.  | Methane, Ethane and Ethene        | .61 |
| 4.8   | Biological Activity               | .63 |
| 4.8.  | 1 Direct Measurement              | .64 |
| 4.8.2 | 2 pH and Alkalinity               | .66 |
| 4.9   | Freon 113 Concentrations          | .67 |
| 4.10  | Volatile Fatty Acids (VFAs)       | .69 |
| 4.11  | Adverse Condition Monitoring      | .70 |
| 4.11  | .1 Manganese                      | .71 |
| 4.11  | .2 Arsenic                        | .72 |

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (S-Aug-22)



|     | 4.11  | .3 VOCs                                               | 73 |
|-----|-------|-------------------------------------------------------|----|
| 4   | .12   | Soil Vapor Methane Monitoring                         | 74 |
|     | 4.12  | 2.1 Evaluation Criteria                               | 74 |
|     | 4.12  | 2.2 Helium Results                                    | 75 |
|     | 4.12  | 2.3 Methane Results                                   | 76 |
|     | 4.12  | .4Soil Vapor Monitoring Conclusions                   | 76 |
| 5   | A     | Additional Limited Groundwater Velocity Investigation | 76 |
| 5   | .1    | Hydraulic Influences on Phase II Study Area           | 77 |
| 5   | .2    | Investigation Methods                                 | 78 |
| 5   | .3    | Groundwater Velocity Investigation Results            | 79 |
|     | 5.3.  | 1 Data Usage and Interpretation                       | 80 |
|     | 5.3.  | 2 S138A Results                                       | 81 |
|     | 5.3.  | 3 S141A Results                                       | 81 |
|     | 5.3.  | 4 S158A Results                                       | 82 |
|     | 5.3.  | 5 Discussion of Velocity Results                      | 83 |
| 6   | 9     | Summary of Results                                    | 85 |
| 6   | .1    | Low-TCE Wells                                         | 85 |
| 6   | .2    | Mid-range TCE Wells                                   | 86 |
| 6   | .3    | High TCE Wells                                        | 87 |
| 7   | (     | Conclusions                                           | 90 |
| 8   | F     | Recommendations                                       | 95 |
| REE | EDENI | res                                                   | 98 |

<sup>\\</sup>mvfile.enthia.com:Projects\Projects\P\Philips\Angues\ASAOC\_defiverables\Bioremediation\_phasell+12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (S-Aug-22)



# List of Tables

| TARIENO | True                                                     |
|---------|----------------------------------------------------------|
| 1       | Injection Quantities                                     |
| 2       | Injection Period Groundwater Field Parameter Results     |
| 3       | Injection Period Groundwater Laboratory Results          |
| 4       | Post-injection Monitoring Field Parameters               |
| 5       | Post-injection Monitoring Groundwater Sampling Schedule  |
| 6       | Post-injection Monitoring Groundwater Laboratory Results |
| 7       | Soil Vapor Methane Monitoring Results                    |
| 8       | TCE Mass Removal                                         |
| 9       | VOC Results Summary                                      |
| 10      | Redox Conditions Summary                                 |
| 11      | Phase II Qualitative Results Summary                     |

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug-22)



# List of Figures

| Sigure No. | Title                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------|
| 1          | Signetics Site Plan                                                                                       |
| 2          | Phase I and II Treatability Test Areas & A-Aquifer Groundwater Elevations                                 |
| 3          | Soil Vapor Well Locations                                                                                 |
| 4          | Phase II Treatability Test Area "A" Aquifer TCE Baseline Concentration Contours, 14–16 September 2020     |
| 5          | Estimated and Actual Radius of Influence                                                                  |
| 6          | TOC Retention Times                                                                                       |
| 7a-7g      | A-Aquifer TOC Contours                                                                                    |
| 8          | Phase II Treatability Test Area "A" Aquifer TCE Fourth Quarter Concentration Contours, 8–11 November 2021 |
| 9          | Change in A-Aquifer TCE Contours                                                                          |

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phaseii\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (S-Aug-22)



# List of Appendices

| Agganax | Tme                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------|
| Α       | Field Logs: Well Construction, Injectate Delivery and Field Observations                                                 |
| В       | Injection Period Groundwater Level Plots                                                                                 |
| С       | Post–injection Monitoring Logs                                                                                           |
| D       | Post-injection Laboratory Analysis Reports (Eurofins Test America, PACE<br>Analytical, Enthalpy, and Microbial Insights) |
| E       | Soil Vapor Methane Monitoring Logs                                                                                       |
| F       | Soil Vapor Laboratory Analysis Reports                                                                                   |
| G       | QA/QC Result Analysis                                                                                                    |
| Н       | Concentration Trend Plots                                                                                                |
| I       | Additional Groundwater Velocity Investigation Well Data Logs                                                             |

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug-22)



# List of Acronyms and Abbreviations

| ACRONYM         | DESCRIPTION                                                           |
|-----------------|-----------------------------------------------------------------------|
| 1,1-DCE         | 1,1-Dichloroethene                                                    |
| ASAOC           | Administrative Settlement Agreement and Order on Consent              |
| bgs             | Below Ground Surface                                                  |
| CA              | California                                                            |
| CERCLA          | Comprehensive Environmental Response, Compensation, and Liability Act |
| cis-DCE         | cis-1,2-Dichloroethene                                                |
| CO <sub>2</sub> | Carbon Dioxide                                                        |
| сос             | Chemical of Concern                                                   |
| DHC             | Dehalococcoides                                                       |
| DNAPL           | Dense Non-Aqueous Phase Liquid                                        |
| DO              | Dissolved Oxygen                                                      |
| DQO             | Data Quality Objectives                                               |
| DTSC            | Department of Toxic Substances Control                                |
| DUP             | Duplicate Sample                                                      |
| EAB             | Enhanced Anaerobic Bioremediation                                     |
| EPA             | United States Environmental Protection Agency                         |
| ESTCP           | Environmental Security Technology Certification Program               |

<sup>\\</sup>mvfile.ershin.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell:12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



| Astenya   | DESCRIPTION                                     |
|-----------|-------------------------------------------------|
| EVO       | Emulsified Vegetable Oil                        |
| Freon 113 | 1,1,2-trichlorotrifluoroethane; CFC 113         |
| ft/day    | Feet per Day                                    |
| GAC       | Granular Activated Carbon                       |
| gpm       | Gallons per Minute                              |
| HASP      | Site-Specific Health and Safety Plan            |
| HLA       | Harding Lawson Associates                       |
| in. H₂O   | Inches of Water Column                          |
| In. Hg    | Inches of Mercury                               |
| LEL       | Lower Explosive Limit                           |
| MCL       | Maximum Contaminant Level                       |
| μg/L      | Micrograms per Liter                            |
| μm/s      | Micrometers per Second                          |
| mg/L      | Milligrams per Liter                            |
| mL/min    | Milliliters per Minute                          |
| nM        | nanoMolars (nmol/L)                             |
| NPDES     | National Pollutant Discharge Elimination System |
| ORP       | Oxidation-Reduction Potential                   |

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phaseii\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (S-Aug-22)



| ACRONYM | DESCRIPTION                                                                    |
|---------|--------------------------------------------------------------------------------|
| PAIP    | Pressure Activated Injection Probe                                             |
| PCE     | Tetrachloroethene                                                              |
| ppm     | Parts per Million                                                              |
| PSI     | Pounds per Square Inch                                                         |
| QA/QC   | Quality Assurance/Quality Control                                              |
| QAPP    | Quality Assurance Project Plan                                                 |
| RD/RA   | Remedial Design/Remedial Action                                                |
| REG     | Regular (primary) sample                                                       |
| ROD     | Record of Decision                                                             |
| ROI     | Radius of Influence                                                            |
| RWQCB   | Regional Water Quality Control Board                                           |
| SRS-SD  | Slow Release Substrate (SRS®) Small Droplet Emulsified Vegetable Oil Substrate |
| SOP     | Standard Operating Procedure                                                   |
| SVE     | Soil Vapor Extraction                                                          |
| TCE     | Trichloroethene                                                                |
| TDIP    | Top-down Injection Probe                                                       |
| тос     | Total Organic Carbon                                                           |
| TSI-DC  | Terra Systems Inc. <i>Dehalococcoides mccartyi</i> Bioaugmentation Culture®    |

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phaseii\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (S-Aug-22)



| Aeronyn | Description               |
|---------|---------------------------|
| UEL     | Upper Explosive Limit     |
| VOC     | Volatile Organic Compound |

<sup>\\</sup>mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell:\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx (5-Aug-22)



## 1 Introduction

This report provides an evaluation of the in situ enhanced anaerobic bioremediation (EAB) Phase II treatability study conducted at the former Signetics facility in Sunnyvale, CA (Site) for the period of September 2020 through November 2021. This evaluation report was prepared in accordance with the EPA-approved *Phase II Enhanced Anaerobic Bioremediation (EAB) Treatability Study Work Plan* (Locus Technologies, 2020) (Work Plan) dated 23 June 2020.

This report and its appendices demonstrate that post-injection monitoring field activities and data evaluations were conducted as outlined in the Work Plan. Field activities conducted in support of the injection time frame were documented in the *Injection Completion Report, Enhanced Anaerobic Bioremediation (EAB) Phase II Treatability Study* (Locus Technologies, 2021) (Injection Completion Report) dated 4 January 2021.

The Phase II treatability study goal is to complement and enhance the findings and recommendations presented in the EAB Study (Phase I) performed from November 2016 through December 2017. The overall objective of the treatability study is to evaluate the effectiveness of in situ enhanced anaerobic bioremediation of volatile organic compounds (VOCs) within the "A" aquifer at or near the Site source area for the enhancement of reductive dechlorination of chlorinated ethenes, specifically trichloroethene (TCE), as a potential treatment technology.

This evaluation report was prepared by Locus Technologies in response to the Administrative Settlement Agreement and Order on Consent (ASAOC) for the Site. The settlement was entered into voluntarily by Philips Semiconductors, Inc. (Philips) and the United States Environmental Protection Agency (EPA) with an effective date of 15 March 2019.

#### 1.1 Site Background

The Site is located in Sunnyvale, California and is comprised of four contiguous parcels: two former semiconductor fabrication and testing facilities located at 811 East Arques Avenue (811

\\rmvfile.embia.com\Projects\Projects\P\finlips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\)2\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



Arques) and 440 North Wolfe Road (440 Wolfe), as presented in Figure 1, and two office buildings located at 815 and 830 Stewart Drive. The properties are no longer owned or operated by Philips. Past investigations at the Site have determined that groundwater is impacted with VOCs.

Chemicals of concern (COC) for the Site were established in the California Regional Water Quality Control Board (RWQCB) Order 91–104 (Order), adopted on 19 June 1999. Two additional chemicals were added in February 2020 by the EPA. The ten current chemicals of concern for this study are:

| Chemicals -of-concern                             |
|---------------------------------------------------|
| Chloroform                                        |
| 1,1-dichloroethane (1,1 - DCA)                    |
| 1,1-dichloroethene (1,1-DCE)                      |
| cis-1,2-dichloroethene (cis-DCE)                  |
| trans-1,2-dichloroethene (trans-DCE),             |
| tetrachloroethene (PCE)                           |
| 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113) |
| 1,1,1-trichloroethane (1,1,1-TCA)                 |
| trichloroethene (TCE)                             |
| vinyl chloride                                    |

<sup>\\</sup>mvfile.emthia.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_fleport\_revised\_ EPA\_clean.docx (5~Aug- 22)



The principal constituent of concern is TCE, which, along with its daughter compounds, has been the focus of the Phase II study. Cleanup standards for these COCs were established in the 1991 *EPA Superfund Record of Decision* (ROD) (EPA, Environmental Protection Agency (EPA), Superfund Record of Decision: Signetics (Advanced Micro Devices 901)(TRW Microwave), First Remedial Action –Final, September, EPA/ROD/R09–91/074, 1991).

### 1.2 Site Hydrogeology

The aquifer system at the Site has been described in detail in the *Remedial Investigation Report* [Harding Lawson Associates (HLA) et al., 1991]. The subsurface has been divided into the "A" and "B" aquifer zones. The aquifers occur at the approximate depths listed in Table 1 and below.

| Aquifer | Approximate Depth          |
|---------|----------------------------|
|         | Below Ground Surface (bgs) |
| "A"     | 10 - 30                    |
| "B1"    | 30 - 50                    |
| "B2"    | 50 - 70                    |
| "B3"    | 70 - 90                    |

Previous investigations at the Site have revealed that the aquifers have varying thicknesses and are frequently discontinuous. At some locations, more than one water-bearing unit may be present within an aquifer. There are also localized areas where aquifers coalesce. The "A" aquifer is generally more laterally continuous at the Site than the other aquifers (Emcon, 1984) and characterized by silty and clayey sand with thin, localized sandy and gravelly channel deposits. Boring logs of established monitoring and extraction wells within the treatment area in the "A" aquifer are presented in Appendix A of the Work Plan. Boring logs of the three new wells installed

<sup>\\</sup>mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



as part of the Phase II EAB Work Plan implementation are presented in Appendix A of the Injection Completion Report.

In 2005, excavated clean soil from the demolition of the 811 Arques facility was placed in the current bioremediation study area. This soil has created a mound of fill that is approximately six to nine feet (ft) above the grade of the remainder of the site. Thus, the aquifer depths in the bioremediation study area are approximately six to nine feet deeper than the values in the table above.

Regional groundwater flow in the "A" aquifer is generally northward at the Site. However, operating extraction wells, trenches, and sumps cause the groundwater flow direction to differ from this in the vicinity of the Site, as noted in the treatability study area where it flows northeast. "A" aquifer groundwater elevation contours for 2020 are presented in the *Annual Groundwater Report* (Locus Technologies, 2021) and have been integrated in Figure 2.

## 2 Purpose

The overall objective of the treatability study is to evaluate the effectiveness of in situ enhanced anaerobic bioremediation (EAB) of VOCs within the "A" aquifer at or near the site source area for the enhancement of reductive dechlorination of chlorinated ethenes as a remedial technology. A list of objectives was developed in Section 4.1 of the Work Plan (Locus Technologies, 2020) and are presented below.

- Improve the monitoring network by adding three additional monitoring wells in the treatability study area for baseline and progress monitoring; one additional well at the upgradient end of the treatability study area, and two additional wells at the downgradient end of the treatability study area.
- Collect injection pressure data at varying flow rates to refine injection procedures for future full-scale implementation.

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



- Gauge water levels surrounding injection points to measure the radius of influence (ROI) of the injection.
- Increase carbon availability across the study area to decrease electron acceptor profile, mitigate VOC rebounds, and support the repopulation of inoculated microbial cultures.
- ♦ Increase Dehalococcoides (DHC) populations where populations have declined below the target of 1 x 10<sup>6</sup> cells/L (1 x 10<sup>3</sup> cells/mL) based on third quarter monitoring: S146A and S140A.
- Implement a gridded injection, expanding reactive zone to reduce the effects of boundary conditions (the effects of untreated areas on treated areas) and migration of VOCs to downgradient areas.
- Implement a gridded injection based on a 20-foot ROI, verified with field observations such as water levels or appearance.
- ♦ Determine the effectiveness of Slow Release Substrate (SRS®)- Small Droplet Emulsified Vegetable Oil Substrate (SRS-SD) and Terra Systems Inc. *Dehalococcoides mccartyi* Bioaugmentation Culture® (TSI-DC) bioaugmentation culture is effective at promoting anaerobic degradation of chlorinated ethenes and Freon-113 at S140A and S141A.
- ♦ Refine in situ remedial parameters for full-scale implementation.
- ♦ To demonstrate that injection of this substrate would not create unintended adverse impacts to groundwater.

The EAB system has been evaluated for effectiveness based on performance monitoring data collected over a period of twelve months. Per Section 4.6 of the Work Plan, evaluation of data is intended to determine:

whether the data passed data quality criteria,



- whether SRS-SD created a reducing geochemical environment and its co-application with TSI-DC induce biotic and abiotic anaerobic degradation of TCE to below baseline concentrations; and if so,
- optimal in situ parameters (such as substrate volumes, injection rates, number of applications, effective ROI) for use in developing a full-scale EAB program to remediate the impacted groundwater.
- ♦ Additionally, the data will inform the rate of formation and degradation of biodegradation daughter products and formation of non-toxic byproducts ethene and ethane.

Performance monitoring parameters to support the above objectives and determinations were developed in the Work Plan and evaluated based on performance expectations. Descriptions of specific parameters and how they are intended to be used and interpreted are shown in Table 3 and Table 7 of the Work Plan.

## 3 Summary of Field Activities

The following section summarizes Phase II EAB related activities at the Signetics site. The EAB injections were conducted in November 2020 followed by post-injection performance monitoring activities for one-year. A complete discussion of the injection field activities can be found in the Injection Completion Report (Locus Technologies, 2021).

Prior to the start of injections, a baseline groundwater monitoring event was conducted at the Site from 14–16 September 2020 to gather data necessary for assessing potential COC rebounding in the area of the Phase I injections and ultimately, for adjusting the substrate injection volumes and concentrations based on COC and geochemical conditions at the time of injections. To improve the monitoring network, three additional monitoring wells were installed via hollow stem auger on 3–4 September 2020: S158A, S159A, and S160A. These three A–aquifer wells were installed to provide supplemental information on the lateral extent of the injection ROIs as well as baseline groundwater conditions. S159A and S160A are located on the north end

\\nwfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_f5-Auo--22)



of the Phase II study area and one well S158A is located on the south end (see Figure 1). Using the results from the baseline monitoring event, substrate volume requirements originally proposed in the Work Plan were recalculated using the Environmental Security Technology Certification Program (ESTCP) Substrate Calculation Tool developed by Parsons (Parsons, 2010). Volumes were then adjusted for the SRS-SD substrate demand that requires a minimum of 500 milligrams/liter (mg/L) total organic carbon (TOC) (Locus Technologies, 2021). These design volumes were then further increased by approximately 50% at all injection locations to account for elevated sulfate concentrations. At two injection points, the SRS-SD and injection solution volumes were further increased, by 250% and 50%, respectively. Final injection quantities were documented by Cascade and discussed below.

#### 3.1 Injection Implementation

A bioremediation injection solution consisting of emulsified vegetable oil (EVO), bioaugmentation culture, conditioned water, and sodium bicarbonate was injected into the subsurface soils and groundwater in the Phase II treatability study area (Figure 2). The EVO product implemented in this study was SRS-SD substrate and the bioaugmentation culture was TSI-DC.

After EPA-approval the Work Plan, field staff mobilized and began the pre-injection process. This started on 5 November 2020 with the conditioning of injection water to create an optimal anaerobic environment for the bacteria. To accomplish this, water was treated with sodium ascorbate in two 21,000-gallon water tanks and monitored periodically for decreasing dissolved oxygen (DO) and oxidation-reduction potential (ORP) values. The ideal target for the conditioned injection water was dissolved oxygen (DO) of 0.5 mg/L and a negative oxidation-reduction potential (ORP). Although the DO concentration was slightly above the target, based on the negative ORP and the asymptotic response to additional sodium ascorbate, it was determined that the conditioned injection water reached satisfactory levels of DO and ORP (0.92 mg/L and – 147.7 ORP, respectively) on 10 November 2020. During onsite discussions with the substrate

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auc--22)



vendor and EPA, the consensus was that the DO was sufficiently low to proceed. The remainder of the injection solution was then mixed in tanks located on the injection platform. The injection solution consisted of SRS-SD substrate, conditioned water, sodium bicarbonate, and TSI-DC bioaugmentation culture in the quantities detailed in Table 1.

From 10–20 November 2020, twelve injections were conducted with a track–mounted direct push drill rig equipped with an injection platform. The first 5 feet of each injection borehole was advanced via hand auger to ensure underground utility clearance. The injection solution was prepared in a two–step process: SRS–SD, conditioned water, and sodium bicarbonate was first mixed in tanks located on the injection platform, then the TSI–DC culture was injected inline as the mixture was pumped to the drill rig at each injection location. The solution was injected via two methods (see Section 4.3.1), with injections administered every 2.5 feet for eight intervals, amounting in a total of 20 feet of injected substrate mixture at each location. Injections proceeded in the order seen in Table 1 at the locations seen in Figure 2. The following changes from the Work Plan design were noted:

- ♦ The highest SRS-SD concentration was injected at INJ-5 instead of the target INJ-1 because it was closer to the area of higher baseline TCE concentrations.
- ♦ At the last injection location, INJ-6, the SRS-SD concentration was increased to 140 gallons to use up remaining substrate conditioned water.
- ♦ The 150% dilution volume was ultimately injected at INJ-9 instead of the target INJ-12 because it was closer to higher baseline TCE concentration where an increased ROI could be beneficial.
- The initial injection depth was approximately 15 ft bgs, which was 5 ft deeper than the 10 ft bgs Work Plan specified depth. This was due to the presence of additional fill above grade as discussed in the Completion Report. The ending depth was also subsequently

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



lower, at 35 ft bgs. When considering the fill, the aquitard depth is 36-39 ft bgs, therefore aquitard penetration is unlikely. The borehole was also grouted.

The contractor logged flow rates, pressures, and amendment ratios. Locus monitored back pressures and the visual presence of daylighting for each injection interval. Daylighting did not occur during the introduction of the materials. Injection delivery and monitoring field logs are included in Appendix A.

During injection activities, water levels were gauged simultaneously with well-dedicated sounders at well locations nearest to the concurrent injection point as another means to monitor potential daylighting. Groundwater elevations fluctuated at time of injections, indicating that injection point was hydrologically connected to the treatability area. Injection period groundwater levels are included in the Appendix A daily field activity logs and the plots seen in Appendix B. Monitoring wells in the Phase II study area were also sampled during the injection activities to assess the distribution of the substrate. Field parameters and laboratory results can be seen in Table 2 and Table 3, respectively.

Additionally, on the last day of injections, 20 November 2020, three borings (TW-1, TW-2, and TW-3) were advanced via direct push to roughly 13 ft-bgs to collect grab groundwater samples. These ad hoc samples were intended to bolster constraints on the baseline lateral extent of VOCs in the Phase II study area. Upon complete delivery of substrate at each injection point and the collection of grab samples at the exploratory borings, each boring was grouted with Portland cement and covered with native soil to restore each original surface. Upon complete delivery of substrate at each injection point, borings were grouted and covered with native soil. The area of activity was decommissioned, and waste removed within 24 hours following the last injection.

#### 3.2 Post-Injection Monitoring

The Phase II study area was monitored post-injections to gather data for this performance evaluation. The post-injection data gathering process consisted of 1) sampling and monitoring

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



groundwater from fourteen existing monitoring wells (S025A, S049A, S088A, S134A, S137A, S138A, S139A, S140A, S141A, S143A, S146A, S1598A, S159A, and S160A) (Figure 2) and 2) collection of vapor soil gas samples downgradient from treatability area (Figure 3) to ensure methane produced by the bioremediation process was not a hazard to nearby buildings and receptors. Field monitoring and sampling logs from each groundwater sampling event are included in Appendix C. Soil vapor well construction logs are included in Appendix C of the Phase I Evaluation Report (Locus Technologies, 2018), and sampling logs are shown in Appendix E. The series of field events conducted for post-injection monitoring were as follows:

- ♦ Month 1 Groundwater Monitoring: 15–18 December 2020
- ♦ Month 2 Groundwater Monitoring: 18–20 January 2021
- Month 3 Groundwater Monitoring: 15-17 February 2021
- ♦ Methane Soil Vapor Monitoring: 18–19 February 2021
- Methane Soil Vapor Monitoring: 17 March 2021
- Methane Soil Vapor Monitoring: 16 April 2021
- Quarter 2 Groundwater Monitoring: 17–19 May 2021
- Methane Soil Vapor Monitoring: 21 May 2021
- Methane Soil Vapor Monitoring: 21 June 2021
- Methane Soil Vapor Monitoring: 17 July 2021
- ♦ Methane Soil Vapor Monitoring Re-sample: 6 August 2021
- Quarter 3 Groundwater Monitoring: 17-19 August 2021
- Quarter 4 Groundwater Monitoring: 8-10 November 2021

#### 3.2.1 Groundwater Monitoring

In order to validate the effectiveness of the EAB design following the injections, a groundwater monitoring plan was developed, which is outlined in Table 2 of the Work Plan for the Phase II Treatability Study (Locus Technologies, 2020). The monitoring plan was designed to provide

<sup>\\</sup>mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



sufficient data to evaluate the effectiveness of the study and to provide the necessary information to plan a full-scale implementation of the technology if the treatability study is successful.

#### 3.2.1.1 Groundwater Sampling Procedures

Post-injection performance monitoring was conducted monthly for the first three months following the injection event, then quarterly for three additional sampling events. At each well, concentrations of off-gassed methane trapped within the well-headspace was measured and recorded with a RKI Eagle 2 portable gas detector. Water levels were gauged using an electronic water level indicator graduated to 0.01 feet, and then referenced to the top of the well casing elevation. Groundwater samples were collected using low flow purging and sampling methods described in the EPA's EQASOP-GW4 Standard Operating Procedure (SOP). At the time of purging, Hach field tests were used to gather arsenic, ferrous iron, and manganese groundwater samples at the well head to protect samples from exposure to oxygen. Post-injection monitoring field parameter results are compiled in Table 4.

Dedicated sample tubing was utilized at each well to lower the possibility of cross contamination. Equipment that was used at more than one sample location, however, was decontaminated prior to sampling a subsequent well using a standard 3-stage decontamination process.

#### 3.2.1.2 Groundwater Analyses

Table 5 outlines the complete post-injection groundwater monitoring analysis schedule. Samples were analyzed for the following analytes using the test methods below, as established in the Work Plan (Locus Technologies, 2020):

- ♦ Alkalinity (SM 2320)
- ♦ Carbon Dioxide (RSK 175)
- Dehalococcoides (DHC)(QuantArray-chlor)
- Hydrogen (AM20GAX)

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



- Manganese and Arsenic, Dissolved (EPA 200.7)
- Methane, Ethane, and Ethene (RSK 175)
- ♦ Nitrate and Sulfate (EPA 300.0)
- ♦ Sulfide (SM 4500)
- ♦ Total Organic Content (SM 5310C)
- ♦ Volatile Fatty Acids (AM23G)
- Volatile Organic Compounds (EPA 8620B)

Groundwater samples were submitted to Eurofins/Test America, Pleasanton, CA for all laboratory analyses, except for dissolved gases (RSK 175), metabolic acids (AM23G), hydrogen (AM20GAX), and DHC (QuantArray-chlor) analyses. Samples for the former three analyses were submitted to Pace Analytical in Baton Rouge, LA. DHC analyses were submitted to Microbial Insights, Inc. of Rockford, TN. All laboratories adhered to industry-standard QA/QC procedures when completing analyses. Post-injection monitoring laboratory results are compiled in Table 6 and laboratory results are in Appendix D.

#### 3.2.1.3 Groundwater QA/QC Samples

Sampling was performed according to test method procedures and the appropriate Quality Assurance/Quality Control (QA/QC) measures, all of which are established in the *Quality Assurance Project Plan (QAPP)* for Enhanced Anaerobic Bioremediation Treatability Study - Phase // (Locus Technologies, 2020). This included collecting one field blank sample per each event to verify sample integrity during sample collection procedures. Similarly, one set of trip blank samples were sent to the lab with the regular field samples on each sampling day. Trip blank samples were analyzed for VOCs to ensure that any compounds detected in the sample were not the result of contamination during the handling and sampling process used for the samples prior to analysis. Lastly, one field duplicate sample was collected per each sampling event using laboratory-certified blank water. Results of the QA/QC samples are discussed in Section 4.1.

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auc--22)



### 3.2.2 Soil Vapor Monitoring

#### 3.2.2.1 Methane Monitoring Criteria

While increased methane concentrations in groundwater and well-head vapor would most likely indicate favorable subsurface conditions for anaerobic biological activity, excessive methane concentrations could potentially pose both a fire hazard and a hazard to field personnel and nearby other receptors. Specifically, methane is explosive when present in concentrations between its lower explosive limit (LEL) of 50,000 parts per million (ppm) and its upper explosive limit (UEL) of 150,000 ppm (NIOSH, 2007). In the QAPP, specific methane concentration criteria for both groundwater and well-head vapor were identified that correspond to an action or set of actions. The primary response to elevated methane concentrations in well-head vapor and groundwater is to continue monitoring methane at the frequency of groundwater sampling. However, when well-head methane concentrations exceeded 10% of its LEL (5,000 ppm) and methane in groundwater exceeds 10 mg/L in the same well, the QAPP states that soil vapor would be sampled at three previously installed dual-nested soil vapor implants placed adjacent to the surrounding commercial buildings (Figure 3). The action criteria from the QAPP are outlined in the table below.

| Methane Concentration Criteria    | Action                                                                                                        |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------|
| <10% LEL (5,000 ppm) in well-head | Continue monitoring well-head vapor at the                                                                    |
| vapor                             | frequency of groundwater sampling or higher (i.e. monthly or biweekly) depending on groundwater (IDEM, 2019). |
| AND                               |                                                                                                               |
| >10 mg/L in groundwater           |                                                                                                               |

<sup>\\</sup>mvfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



| Methane Concentration Criteria                                         | Action                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| >10% LEL (5,000 ppm) in well-head  vapor  AND  >10 mg/L in groundwater | <ul> <li>Soil gas monitoring points near receptors shall be sampled</li> <li>Continue monitoring well-head vapor at the frequency of groundwater sampling or higher (i.e. monthly or biweekly) depending on groundwater and well-head results (IDEM, 2019).</li> </ul>                                                                        |
| >25% LEL (12,500 ppm) in well-head vapor  AND  >10 mg/L in groundwater | <ul> <li>When above ground structures, preferential pathways and subsurface structures are not present, venting would usually be an appropriate mitigation measure unless concentrations are extremely high site-wide (IDEM, 2019).</li> <li>Continue monitoring at a monthly frequency or higher, depending on well-head results.</li> </ul> |

#### 3.2.2.2 Criteria Exceedances

During the second and third monthly (18–20 January 2021 and 15–17 February 2021, respectively) groundwater sampling event, wells S137A and 139A both recorded well-head methane vapor concentrations exceeding 5,000 ppm and methane concentrations in groundwater greater than 10 mg/l. In response, monthly samples were collected from the vapor wells between February and August 2021, until the action triggering criteria were no longer met.

#### 3.2.2.3 Soil Vapor Sampling Procedures

Soil vapor sampling equipment and procedures were selected in accordance with the 2015 California Department of Toxic Substances Control (DTSC) and RWQCB Advisory Active Soil Gas Investigations guidance (DTSC, 2015).

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Angues\ASAOC\_defiverables\Bioremediation\_phaseII\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



#### 3.2.2.4 Shut-In Test

Prior to sampling each soil vapor well, a quantitative shut-in test was conducted on each new sample train. The shut-in test involved applying a minimum vacuum of 100 inches of water column (In. H<sub>2</sub>O) to the sample train with a vacuum pump to evacuate the lines. A shut-off valve to the vacuum pump was then closed and the sample train remained under vacuum for approximately five minutes to assess whether there was any loss of vacuum. If there was any observable loss of vacuum, the fittings on the sample train were then adjusted until the vacuum in the sample train did not noticeably dissipate. If the sample manifold would not hold vacuum after this adjustment, the sample manifold was discarded for a new one. After the shut-in test was successfully completed, the result was recorded on field sampling forms and the sampling train was not altered until the sample was collected. The field forms for soil vapor sampling events are included in Appendix E.

#### 3.2.2.5 Sample Collection

Each vapor point was purged 3 case volumes using a vacuum pump, regulated to a flow rate of 150 milliliters per minute (mL/min). A new flow regulator was used for the collection of each new sample to avoid cross contamination. Purge volumes were calculated using standard methods that account for the borehole diameter, well construction material porosity, and the tubing diameter and length. Both purging and sampling occurred within a tracer gas shroud held to an ambient concentration of at least 10 percent helium to check for communication between the surface air and vapors at depth. Both in-line helium and ambient helium in the shroud were measured using standard helium gas detectors. At regular intervals during purge and sample collection, in-line helium and shroud helium concentrations in addition to well-side and canister vacuum pressures were recorded (Appendix E).

After purging, all samples were collected into passivated 1.4-liter stainless steel Summa canisters at the same flow rate of 150 mL/min. Once the canister vacuum gauges reached between 5 and

<sup>\\</sup>mvfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5~Aug- 22)



2 inches of mercury (In. Hg), the sample was collected, and the canister valve was closed. The canister's final vacuum reading was noted on field sampling forms and on the chain-of-custody to document sample integrity (Appendix E). Additionally, methane was measured and recorded with a RKI Eagle 2 portable gas detector at each soil vapor well where a sample was collected.

#### 3.2.2.6 Soil Vapor QA/QC Samples

At least one co-located duplicate sample was collected during each sampling day. The replicate samples were intended to evaluate analytical variability between samples. These field duplicate samples were obtained over the same time interval as the original sample and were sampled according to the same procedures previously described. Additionally, at least one field blank sample was obtained during each sampling day, using pure nitrogen gas as the blank gas. The field blank results were intended to verify sample integrity during the process of field sample collection.

The soil vapor samples were delivered directly to the laboratory following field activities. All samples were analyzed for methane and helium using method ASTM D-1946 for fixed gases. Sample analysis was conducted by Enthalpy Analytical in Orange, CA.

#### 3.3 Deviations

The following were notable deviations from the activities described in the EAB Phase II Work Plan:

- During the Month 1 event, samples were not analyzed for arsenic and manganese by EPA 200.7. During these events, arsenic and manganese were measured using field measurement HACH kits. The 2020 Work Plan specifies that either the field kits or EPA 200.7 analysis may be used for determining concentrations of these metals. In subsequent events, lab analysis was elected in order to achieve lower reporting limits.
- ♦ During the Month 2 and Month 3 events, samples were analyzed for total recoverable arsenic and manganese by EPA 200.7, instead of dissolved arsenic and manganese EPA

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



- 200.7. This occurred due to a miscommunication with the lab regarding the required metals analysis.
- During the Month 3 event, Test America sub-contracted analyses to McCampbell Analytical, Inc, which performed Nitrate as N and Sulfate analyses by Method 300.1, instead of Method 300.0.

After each monitoring event and upon review of sample results, sampling teams coordinated with laboratories to avoid future deviations. This required scheduling sampling events earlier in the week to avoid shipping delays over weekends, communicating the Work Plan requirements to laboratory staff and managers, and switching shipping carriers. For a complete analysis of the degree to which the work performed for the entire EAB Phase II study complied with specifications from the Work Plan and the QAPP, refer to Appendix G.

## 4 EAB Performance Results and Discussion

### 4.1 Data Quality Results

As discussed in Section 3.2.1.3, QA/QC measures were conducted each monitoring event during Phase II to determine the degree to which the work performed complied with specifications from the Work Plan and the QAPP. The Phase II QA/QC evaluation shown in Appendix G examines QA/QC results and procedures in terms of the five data quality objectives established in Section 2.5 of the QAPP: accuracy, precision, completeness, representativeness, and comparability (Locus Technologies, 2020). All Phase II field measurements and laboratory results underwent a quality control evaluation available in Appendix G. Laboratory QA/QC procedures and/or results that do not meet performance criteria are discussed in Appendix G and have been integrated in the Section 4 discussion, as needed.



#### 4.2 Baseline TCE Conditions

A baseline groundwater monitoring event was conducted at the Site from 14–16 September 2020. The results of this sampling effort were used to characterize initial groundwater conditions and determine appropriate concentrations and volumes of bioremediation injectate to use at each injection boring. At the time of the injection field activities, three exploratory borings were installed to roughly 13 ft–bgs and grab groundwater samples were collected from each. Since TCE is the principal COC at the Site, TCE results from these sampling efforts were used to approximately constrain the lateral extent of VOC contamination within and around the Phase II study area prior to implementing the treatability study. Baseline results were originally reported in the Completion Report.

Baseline TCE contours are presented in Figure 4. Baseline concentrations of TCE in the Phase II study area ranged from 17 to 15,000  $\mu$ g/L at S137A and S140A, respectively. The highest concentrations of TCE are clustered towards the center of the Phase II study area, as delineated by the 10,000  $\mu$ g/L contour which encompasses S140A and extends slightly eastward towards S158A, S146A, and S138A. The 1,000  $\mu$ g/L contour is bounded by S159A to the north, S143A to the west, TW-1 to the south, and nearly 15 feet past S146A to the east. Following the general shape of the 1,000  $\mu$ g/L contour, the 100  $\mu$ g/L contour is bounded by S049A to the north, S144A to the west, roughly 20 feet past TW-1 to the south, and TW-3 to the west. Baseline concentrations of other constituents are further discussed in Section 4.5.

#### 4.2.1 Well Groupings

Of the fourteen groundwater monitoring locations included in Phase II, ten wells are located inside the reactive zone, which is defined as the area influenced by the ROI of the injections, roughly the Phase II treatability study area seen in Figure 2. These ten wells within the reactive zone have been grouped into three regions to better characterize geospatial trends of the expanded



treatability study area. Groundwater wells are grouped in terms of relative baseline TCE concentrations:

1. Low - TCE wells: S137A, S139A and S159A.

Groundwater wells S137A, S139A and S159A are located in the north and northeast region of the reactive zone. Phase II baseline TCE concentrations at these locations range from  $17 \mu g/L$  to  $140 \mu g/L$ , refer to Figure 4.

2. The mid-range TCE wells: S141A, S143A and S160A.

Groundwater wells S141A, S143A and S160A are in the northwest region of the reactive zone. Phase II baseline TCE concentrations ranged from 500  $\mu$ g/L to 1,400  $\mu$ g/L.

3. The high-TCE wells: S138A, S140A, S146A and S158A.

Groundwater wells S138A, S140A, S146A and S158A exhibit the highest concentrations of TCE and are located in the southern half of the reactive zone. Baseline TCE concentrations ranged from 5,700  $\mu$ g/L to 15,000  $\mu$ g/L. The maximum Phase II baseline concentration of TCE was at well S140A at 15,000  $\mu$ g/L.

Four wells are located outside of the reactive zone of the Phase II treatability study area. Wells S025A and S088A are 364 feet and 120 feet downgradient of the treatability study area, respectively, and are primarily monitored for adverse impacts, refer to Section 4.11. Well S049A is downgradient of the reactive zone and technically beyond the anticipated ROI of injections, but conditions at S049A may be impacted by the reactive zone due to its proximity downgradient (approximately 40 feet). Well S134A is the only upgradient monitoring well outside of the study area and represents background conditions for this study.

#### 4.2.2 Radius of Influence

The Phase II treatability study injection activities were performed from 10 to 20 November 2020, consistent with the test goals in Section 4.1 of the Work Plan. The spacing of injection points was informed by the average ROI documented for the Phase I treatability study. In addition to injection

\\rmvfile.embia.com\Projects\Projects\P\finlips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\)2\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



grid expansion, one of the goals of the injection strategy was to confirm the design ROI using groundwater elevation measurements. A summary of results is presented in the sections below.

#### 4.2.3 Radius of Influence Based on Groundwater Elevations

The principle goal for measuring the ROI in this phase of the study was to confirm the observed 20–foot lateral distribution of reagents, thus confirm the adequacy of injection point spacing for future EAB implementation. Injections were delivered over a twelve–point injection grid, spaced 20 feet trilaterally (Figure 5). The ROI for each injection was the resulting distance between the injection point and farthest monitoring well in which mounding of a minimum of 0.5 feet above baseline was measured. In instances when injection activities were commenced in the later hours of the day and completed on the following morning, only groundwater levels from the second day were evaluated for the ROI. This eliminated influences from residual flows of preceding injection activities as groundwater levels attenuated overnight. Groundwater levels monitored for each injection point are shown in Appendix B. ROI evaluation results are summarized below:

| ROI Distance | No. Observations |
|--------------|------------------|
| <20 feet     | 3                |
| 20-29 feet   | 2                |
| 30-39 feet   | 6                |
| >40 feet     | 1                |

The influence of delivered injection fluids were monitored using previously installed monitoring wells. Generally, three to four monitoring wells were selected per injection point for mounding observations and to confirm target ROI. When feasible, a minimum of one monitoring well within 20 to 30 feet from injection point was selected. Otherwise, injection monitoring distance was dictated by the location of monitoring well closest to injection point. The selected monitoring wells for each injection location are listed in Table 1 (see daylighting monitoring wells).

<sup>\\</sup>rmvfile.embia.com\Projects\Projects\P\finlips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\)2\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



A change in elevation of at least 0.5 feet was observed at distances below 20 feet for three injection locations 8, 9, and 10 (Appendix B Figure B-2, B-9, and B-4, respectively). Monitoring of groundwater level for these injection locations was not feasible at distances within 20–30 feet due to existing well configuration. As a result, response to injection delivery was measurable only at nearest monitoring distances between 12 to 15 feet. Injection influences monitored within and outside the 20–30 feet distance range, measurable mounding was observed at 20 feet or greater. A maximum groundwater elevation of 42 feet was observed during injection 11. However, this flow response may have been influenced by preceding injection activities completed on same day (Figure B-13).

To obtain a realistic ROI for this study, the arithmetic average calculation excluded monitoring data for injection location 8, 9, and 10 due to potential data gaps, and for injection 11 due to possible influence from residual flows. The resulting average ROI for this study was approximately 33 feet.

Note that the ROI based on groundwater elevations is not an accurate parameter for measuring the effective lateral distribution of reagents. Mounding effects may have been induced from the combination of lateral displacement of 10% of resident groundwater volume and injected reagent volume. Assuming minimal mixing between reagents and groundwater, the increase in groundwater elevation at distances greater than 20 feet may be influenced by the displaced unamended front or by residual flows from preceding injection activities in the vicinity. Therefore, a ROI of 20 – 30 feet should be retained for future implementations. Refinement of target ROI may be assisted with employment of tracer studies or similar methods to evaluate site specific fate and transport characteristics and preferential pathways within the treatability zone (Nelson et al, 2005).

\\mvfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



### 4.3 Delivery Techniques

Another test goal was to evaluate injection delivery techniques. This goal was achieved by evaluating direct push tool performance, injection pressure and flowrates at which daylighting and formation fracturing were not observed; and by documenting site-specific fluid volume acceptance capacity.

Prior to the beginning of injection activities, a pre-injection calibration test was conducted within the pilot area. The test consisted of the injection of 10 gallons of potable water at the INJ-3 injection location. The injection test was done to establish flow rates, pressures, and to check for leaks through the delivery system. Injection of remedial reagents was carried out with a Geoprobe 8030 track mounted direct push drill rig with push rod assembly.

Consistent with Section 4.2 of the Work Plan, pressures and flowrates were evaluated as follows:

1) evaluation of pressure data at flow rates between 10 to 25 gallons per minute, 2) evaluation of flow rate data at low pressure injections from gravity feed to 25 pounds per square inch (PSI). Fluid acceptance observations were made by evaluating backpressures during the delivery of 'test' injectate volumes. One test injectate consisted of SRS-SD at 250% above target volume and another of dilution water at 150% above target volume. Completed delivery parameters are seen in Table 1.

#### 4.3.1 Pressure and Flowrate Delivery

The delivery of injection reagents was initiated with a 2.25-inch Pressure Activated Injection Probe (PAIP) (Geoprobe, 2013). This tool is designed with four horizontal injection ports that allows for the radial injection of reagents into the subsurface, in addition to a check valve to prevent back-flow. This injection tool was used at injection locations INJ-3 and INJ-8, which were the first injection points to be installed. The second tooling was a 2.25-inch x 2.5 feet top-down injection probe (TDIP). This tool uses injection ports spread out over the entire injection interval (2.5 feet). This tool was used in all injection points, except at locations INJ-3 and INJ-8. Initial

\\nwfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_f5-Auo--22)



and sustained pressures and average flowrates were monitored at the top of the delivery line at each of the eight intervals. Refer to Table 1 and the Completion Report Appendix E for the Cascade Injection Report.

Sustained pressures and flowrates for INJ-3 were estimated at 70-100 PSI and 3.8 - 20.2 gallons per minute (gpm). At a depth of 31-33.5 bgs, the injection was stopped due to clogging of the tool with clay material. The lowest flowrate (3.8 gpm) was measured at 33.5-36 bgs with a sustained pressure of 90 PSI. The resulting delivery rates were possibly due to the lower transmissive material located at lower depths and not a characteristic of tool performance. At INJ-8, observed pressures and flowrates were 150-170 PSI and 19.5-22.5 gpm, respectively. At this location, initial pressures were generally greater than the achieved sustained rate. At maximum, pressures differed by 50 PSI at the top two intervals. The slight decline in pressure from initial to sustained may indicate the localization of compacted soils that may have resulted from the advancement of the direct push tooling and not as an effect of fracturing (In Situ Remediation Reagents Working Group, 2009).

Injection location 6 (INJ-6) was used a test location to document pressure response to flowrates between approximately 10–25 gpm and flowrate response to low pressures between gravity feed and 25 PSI. The TDIP tool was employed for the injection of reagent at flowrates ranging from 10.1 gpm to 23 gpm. Flowrate adjustments were completed in a 'step up' fashion at interval transition. 'Respond' pressures increased from 45 PSI to 175 PSI with increasing flowrates. Based on system capacity and site conditions, a flowrate of 10.1 gpm and resulting pressure of 45 PSI were the lowest achievable delivery rates. Therefore, the evaluation of flowrate response to pressures between gravity feed rates and 25 PSI was not feasible. Daylighting was not observed during the injection process at highest flowrate and pressure; thus it is not recommended to continue the low pressure and flow evaluation in this treatability study area since the higher

\\mvfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5~Aug- 22)



pressures used were not excessive, however for other areas and full-scale application this evaluation may still be necessary

#### 4.3.2 Fluid Acceptance Capacity

Fluid acceptance capacity testing was conducted at INJ-5 and INJ-9. The injectate at INJ-5 consisted of SRS-SD emulsion at 250% above target rate, an equivalent injection volume of 593 gallons per interval or total injection volume of 4,744 gallons. The injectate prepared for INJ-9 consisted of an added 150% of dilution water, the equivalent of 862 gallons (50% above target) per interval or total injection volume of 6,989 gallons. Test volumes were delivered at sustained pressures of 170 PSI and at a maximum flow rate of 22.8 and 25 gpm at INJ-5 and INJ-9, respectively. No daylighting or pressure differential was observed.

The collection of pressure and flowrate data provided useful information on effectiveness of direct push injection tooling, sustainable delivery rates, and site-specific fluid acceptance capacity. Overall, the TDIP tooling provided flexibility in the field for delivering the reagent at various pressures and flowrates. General injection delivery rates were sustained at 170 PSI across the injection column and at flow rates of up to 26 gpm. Similar rates were observed for the delivery of loading volumes of up to 50% above design value. No daylighting or indication of fracturing was observed with the implemented injection techniques.

Observed delivery rates and TDIP tooling are recommended for future implementations, if other delivery parameters (i.e. injection depth, volumes, amendment material, etc.) remain the same. Further refinement of injection techniques may be accomplished by conducting closer inspection of backpressures; specifically, during pre, during, and post injection; to provide higher resolution on potential development of preferential pathways (In Situ Remediation Reagents Working Group, 2009). Additionally, the results of groundwater flow direction and velocity studies may be used to refine the injection layout design.

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



# 4.4 Total Organic Carbon

TOC is an indicator of carbon availability at the site and is used to evaluate substrate distribution. TOC samples were collected consistent with the progress monitoring plan described in the Work Plan (Locus Technologies, 2020). Twelve injections were completed in a period of two weeks from 10 to 20 November 2020. Sample collection was completed at ten monitoring wells daily (to the extent practicable) during injection activities, monthly for first three months, and quarterly, thereafter. Table 6 includes TOC results from all Phase II sampling events, and a summary of TOC results is available in Table 10 along with other key redox parameters. General TOC retention time at monitoring wells is shown in Figure 6 and concentrations over time are presented in Appendix H (Figure H–1–0 through H–1–13). In addition, Figures 7a through 7g present estimated TOC concentration contours for the reactive zone, which show how TOC concentrations vary over time and space throughout the Phase II study period.

#### 4.4.1 TOC Retention Time

The residence time of TOC within the treatment zone is a direct result of carbon utilization rate and site–specific advective flow. In EAB groundwater remedies, sufficient residence time is necessary to achieve complete degradation of chlorinated compounds. SRS–SD (carbon source) reagent injection volumes for the Phase II EAB pilot study were designed for a single application based on 1) baseline stoichiometric demand using the ER–200627 Loading Substrate Tool (Parsons, 2010) and 2) target dosing of 500 mg/L of TOC at the injection point. For this study, TOC was used as a surrogate for evaluating reagent distribution and longevity across the treatment zone over a period of 12 months (design cycle). Generally, TOC values above 20 mg/L are ideal to sustain biological degradation of VOCs (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). The longevity of the reagent will elucidate the effectiveness of design dosage and reagent delivery frequency.



## 4.4.1.1 Non-Reactive Zone TOC

Four wells were evaluated collectively as 'background' or non-reactive zone wells. Sample locations S025A and S088A are a set of distal downgradient wells designated for monitoring water quality impacts. Well S049A is located adjacent and downgradient of the treatment area, and S134A is a background reference well located upgradient (see Figure 2). The initial post injection sampling event in 15–18 December 2020 (Month 1) was completed 25 days following injection activities. Minimal change to TOC concentration was observed in the four background wells throughout the study period. The arithmetic average of baseline and post injection TOC was 1.90 mg/L and 2.15 mg/L (13% difference), respectively. No appreciable changes to TOC concentrations were observed following the first post–injection sampling event. Average TOC in the fourth quarter was estimated at 1.65 mg/L.

#### 4.4.1.2 Reactive Zone TOC

TOC retention time was evaluated using data from monitoring wells within the Phase II reactive zone (treatability area), as shown in Figure 6. Following this approach, data from background wells were omitted. A summary of TOC across the treatment zone is presented below:



| Sampling Event                                       | Avg. TOC<br>(mg/L) | ecelif in<br>ayerrer | Min<br>(mg/4) | Max<br>(mg/-) | No. locations<br>with TOC<br>>20 mg/L |
|------------------------------------------------------|--------------------|----------------------|---------------|---------------|---------------------------------------|
| 14-16 September 2020<br>(Baseline)                   | 1.9                |                      | 1.0           | 2.4           |                                       |
| 10-13 November 2020<br>(Post injection – end week 1) | 38                 | 1900%                | 1.5           | 250           | 7                                     |
| 16-20 November 2020<br>(Post injection – end week 2) | 120                | 210%                 | 2.9           | 580           | 8                                     |
| 15-18 December 2020<br>(Month 1)                     | 110                | -8.0%                | 6.7           | 410           | 8                                     |
| 18-20 January 2021<br>(Month 2)                      | 110                | -5.0%                | 3.5           | 510           | 7                                     |
| 15-17 February 2021<br>(Month 3/Quarter 1)           | 79                 | -24%                 | 1.2           | 460           | 6                                     |
| 17-19 May 2021<br>(Quarter 2)                        | 28                 | -65%                 | 2.3           | 150           | 3                                     |
| 17-19 August 2021<br>(Quarter 3)                     | 34                 | 20%                  | 1.2           | 210           | 3                                     |
| 8-10 November 2021<br>(Quarter 4)                    | 19                 | -43%                 | 0.86          | 130           | 2                                     |

The highest TOC averaged 120 mg/L at the conclusion of injection activities (week 2). TOC tapered following this period, with greatest decrease (65%) occurring in transition to second quarter monitoring event 17–18 May 2021 (between 90 and 180 days). Progressive decline followed until the fourth quarter event in 8–10 November 2021 during which TOC levels ranged from 0.86 mg/L to 130 mg/L and averaged of 19 mg/L.

As seen in the above table, TOC levels above 20 mg/L were sustained at six out of ten monitoring locations through the Month 3 event on 15–17 February 2021 (90 days after injections/Q1). The number of locations with target levels was reduced to three by 17–18 May 2021 (day 180/Q2), and further reduced to two by end of pilot study 8–10 November 2021 (Q4). Target TOC levels were not achieved at well location S160A and poorly retained at S141A. These wells are located

<sup>\\</sup>mvfile.emthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phaseII\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



upgradient of the existing groundwater extraction trench. Although the extraction trench was not operated throughout the pilot, possible natural velocity gradients through the porous material of the trench may be attributing to poor retention of amendment at these locations. Additionally, rapidly decreasing TOC levels were observed at monitoring wells located immediately downgradient from injection points (S137A, S138A, and S159A). The evaluation of other lines of evidence may provide insightful data on whether the rapid decline may be attributed to microbial activity and or high advective flow. The approximate retention time over the course of the study period at each sample location is depicted in Figure 6.

The injection of SRS-SD resulted in a TOC increase from 1.8 mg/L to an average of 120 mg/L by end of second week of injections 16-20 November 2020. Average concentration gradually decreased following this period and with greater reduction by second quarter. Based solely on TOC data, the results suggest an increase in injection frequency or dosing concentration may be required for a 12-month design cycle. However, the depletion may be attributed to the effects of potential groundwater velocity gradients resulting from existing preferential pathways, in addition to its utilization for biotic degradation. Further refinement of amendment dosing and frequency may be assisted with the evaluation of biodegradation rates and from site-specific studies on groundwater velocity gradients across the treatment zone.

#### 4.4.2 TOC Concentration Trends

Prior to Phase II injections, TOC concentrations were relatively constant across the sampling locations, both inside and outside the reactive zone, and ranged from 1 mg/L to 2.4 mg/L during baseline monitoring in 14–16 September 2020. However, injections created high variability in TOC concentrations across the study area. Figures 7a through 7g present estimated TOC concentration contours, which show changes in TOC concentrations over time and across the reactive zone. The first TOC concentration contour figure, Figures 7a, shows TOC results from samples collected approximately two weeks after injections on 20 November 2022, and the final

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



TOC contour figure, Figure 7g, shows conditions at the time of the fourth quarter sampling event 8–11 November 2021. In general the highest TOC concentrations were first observed at the northeast side of the reactive zone, and the lowest concentrations were at the northwest side of the reactive zone (see Figure 7a). By the end of the performance period, the higher TOC concentrations appeared on the south side of the reactive zone (see Figure 7g).

All Phase II TOC results are also presented in time series plots in Appendix H (Figures H-1-0 through H-1-13). The Y-axes of these plots show TOC concentrations that range from either 0-250 mg/L or 0-600 mg/L for reactive zone wells (Figures H-1-4 through H-1-13), depending on the maximum TOC observed. The constant Y-axes aid in the visualization of TOC distribution and depletion over time. These plots identify injection start dates and the 20 mg/L TOC concentration threshold for sustaining biological degradation of VOCs (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Phase II TOC concentrations measured at the non-reactive zone wells are also plotted in Appendix H (Figures H-1-0 through H-1-3).

As shown in Appendix H time series plots, the injections in November 2020 caused TOC to increase to above 20 mg/L at every well inside the reactive zone, while the non-reactive zone wells did not surpass TOC concentrations over 3 mg/L through Phase II. The maximum TOC concertation of 580 mg/L was detected at well S159A on the final day of injections, 20 November 2020. Of the reactive zone wells, S141A and S160A recorded the lowest TOC concentrations and most rapid depletions, refer to Figures H-1-8 and H-1-13 in Appendix H, respectively. The depletion at S141A and S160A is also visible in Figure 7a, which shows how the TOC concentrations at these wells was already below the 20 mg/L threshold by the final day of injections, 20 November 2020.

In the reactive zone, TOC peaked during injections in November 2020, then steadily declined and approached baseline conditions by the fourth quarter. This is the case for wells \$137A, \$138A, \$139A, \$140A, \$141A, \$146A and \$160A, as shown in Appendix H plots. There were a few

\\rmvfile.embia.com\Projects\Projects\P\finlips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\)2\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



exceptions. TOC concentrations at well S159A remained high through February 2021 (90 days after injections), shown in Figure 7d, before steady depletion. At well S143A, TOC was ideal until February 2021 (90 days after injections), then decreased to below 20 mg/L refer to Appendix H Figure H-1-9. Well S158A stabilized through the first quarter monitoring event in February 2021 at around 120 mg/L of TOC, increased during the second and third quarters, and finally decreased back down to 130 mg/L in the fourth quarter monitoring event in November 2021. By the fourth quarter monitoring event, only S158A was above the 20 mg/L TOC threshold, refer to Figure 7g. Wells S138A and S159A were just below the TOC threshold at 18 mg/L and 19 mg/L, respectively, in the fourth quarter.

Declining TOC levels in conjunction with elevated VOCs and the presence of alternate electron acceptors may indicate that additional substrate is required to sustain the anaerobic environment (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Within the Phase II study area, elevated concentrations of the alternate electron acceptor sulfate persisted, especially at wells S140A, S141A and S160A, refer to Table 10. As mentioned, these wells also had low TOC retention times. While preferential pathways and groundwater gradients may play a role in TOC depletion as discussed in Section 5.3, elevated sulfate in the study area (concentrations above 20 mg/L) may also contribute to depletions in TOC. Sulfate concentrations are discussed further in Section 4.6.5.

## 4.5 Volatile Organic Compounds (VOCs)

Section 1.1 discusses the ten COCs identified at the Signetics Site. Historical monitoring has shown TCE to be the predominant COC in the treatability study area, so TCE serves as the indicator chemical for the study. The aim of Phase II is to assess EAB as a viable technology for reducing COCs to acceptable concentrations. TCE concentrations are evaluated against the cleanup standard (action level) of 5  $\mu$ g/L TCE, originally established in the ROD. Cleanup standards were determined for all COCs in the ROD, however the use of the standards in this EAB

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



evaluation was limited to TCE and two daughter products, cis-DCE and vinyl chloride, with action levels of 6  $\mu$ g/L and 0.5  $\mu$ g/L, respectively. Concentrations of TCE and its daughter products were monitored throughout Phase II, and results are shown in the time series plots in Appendix H (Figures H–2–0 through H–2–27 show molar concentrations of VOCs; Figures H–3–0 through H–3–27 show VOC concentrations in units of micrograms per liter).

Besides TCE and its daughter products, the other prevalent COC at the study area is Freon 113. High concentrations of Freon 113 have been shown to cause stalling in the reductive dechlorination process. Freon 113 concentrations are discussed in Section 4.9. Refer to Appendix H for time series plots of Freon 113 relative to TCE and cis-DCE.

The other Signetics Site COCs are not included in this discussion because concentrations are relatively low compared to chlorinated ethene concentrations in the reactive zone; however, sample results are available in laboratory reports attached in Appendix F. For instance, chloroform was below detection at all locations during Phase II; chlorinated ethanes (1,1,1–TCA and 1,1–DCA) are found at orders of magnitude less than TCE and cis–DCE; and 1,1–DCE is a less common daughter product of TCE.

Phase II results are available in accompanying tables and appendices. Groundwater level measurements and field parameters are shown in Table 4. Analytical data for all wells are shown on Table 6. Temporal concentration plots are available in Appendix H. Associated analytical laboratory reports are included in Appendix D.

#### 4.5.1 TCE Mass Removal

The change in mass of TCE as a result of Phase II injections can be calculated by comparing the baseline TCE mass to fourth quarter TCE mass. This method, shown in Table 8, estimates how many pounds of TCE were removed through a comparison of baseline and fourth quarter TCE analytical contours shown in Figure 4 and Figure 8, respectively. First, the area between each TCE contour ( $<100 \mu g/L$ ,  $<1,000 \mu g/L$  etc.) is multiplied by an assumed saturated aquifer thickness

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5~Auc~22)



of 20 feet and porosity of 0.36 (Locus Technologies, 2021), which converts each contour area into an "A" aquifer groundwater volume. Next, the geometric mean TCE concentration is calculated for wells located inside each contour area. The TCE mass is derived by multiplying each groundwater volume by each respective geometric mean TCE concentration. These calculations are performed for both baseline and fourth quarter TCE analytical contours, and total mass removed is calculated by subtracting the fourth quarter TCE mass from the baseline TCE mass.

Table 8 shows calculated values for baseline and fourth quarter TCE plume areas, geometric mean TCE concentrations, and the estimated TCE mass. Example calculations, conversion factors and assumptions are provided on page 2 of Table 8. This mass removal analysis estimates that the mass of TCE was approximately 19.0 pounds at the time of baseline monitoring in September 2020 and was reduced to 1.1 pounds at the time of fourth quarter monitoring in November 2021, which is a reduction of approximately 17.9 pounds (94% reduction) as a result of the Phase II pilot study. Figure 9 shows both baseline and fourth quarter TCE concentrations. The decrease in the area with higher concentrations indicate the TCE plume is shrinking in the treatability area.

#### 4.5.2 Concentration Trends

The following sections discuss VOC concentration trends at the low, mid-range and high-TCE well groups within the reactive zone (see Section 4.2.1 Well Groupings). Plots showing these trends are included in Appendix H. Plots were made for each well in the standard reporting unit,  $\mu g/L$  as seen in Figure H-3-0 through H-3-13 (Appendix H). Plots were also converted to moles/liter to facilitate one-to-one comparison of the parent and dechlorination products as seen in Figures H-2-0 to H-2-13.

#### 4.5.2.1 Low-TCE wells

Concentrations of TCE ranged from  $17 \mu g/L$  to  $140 \mu g/L$  at the low-TCE wells during the baseline monitoring event in September 2020 (refer to Figure 4). By the fourth quarter monitoring event

\\nwfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auo--22)



in November 2021, TCE concentrations were reduced by 93%, 29%, and 99.8% at \$137A, \$139A and \$159A, respectively, as seen in Table 9 (page 1). This section describes the degradative pathways and VOC concentration trends observed during Phase II.

Molar plots indicate that TCE decreased as a result of the injection at well S137A (INJ-2) and the dechlorination products were generated. Although not clear from the data, it is suspected that cis-DCE increased within the first 30 days, then decreased as expected in the VOC degradation process. Vinyl chloride peaked initially at 30 days, then decreased. Ethene increased until 60 days then stabilized. Both cis-DCE and vinyl chloride began rebounding after the second quarter or 180 days after injections. As mentioned earlier, the TOC retention time at this well was 90 days, indicating the ideal 20 mg/L TOC needed to sustain anaerobic treatment was not available. Additional substrate is likely needed in the area of this well to continue degradation.

The dechlorination product generation was less clear in well S139A. TCE decreased 30 days after injections at INJ-7 but then began rebounding. Cis-DCE and vinyl chloride exhibited a similar trend and rebounded after 30 days. Ethene was generated with a peak at 30 days. The TOC retention time at this well was 90 days, thus substrate was still available during the rebounding. Other factors besides substrate amount may be contributing to rebound at this well. Compared to the other low-TCE wells, S139A is located closer to the baseline 10,000 µg/L TCE area of the plume, shown in Figure 4. Rebounding that occurred at S139A may be influenced by groundwater transport of VOCs from higher concentrated areas of the plume. Sources of rebounding are discussed further in Section 4.5.3.

S159A exhibited an ideal parent and dechlorination daughter product trend. While TCE decreased in response to the injection at INJ-4, cis-DCE increased and reached its peak after 30 days at which point began to decrease. Vinyl chloride began to increase after injections and peaked around 60 days after injections before it decreased. Ethene was generated, peaked 90 days after injections, then decreased. Rebounding did not occur in this well. The TOC retention time was

\/mwfile.enthio.com/Projects\/Projects\/PyPhilips\/Arques\/ASAOC\_defiverables\/Bioremediation\_phapell+12\_revised\_EAB\_Eval\_report\/Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



four quarters. COC concentrations decreases in this well are thus attributed to reductive dechlorination.

After injections, TCE concentrations at wells S137A and S139A decreased to below the action level of 5  $\mu$ g/L after 30 days as seen in Table 9. Well S159A reached the TCE action level shortly thereafter (at 60 days <10  $\mu$ g/L TCE; 90 days 1.6  $\mu$ g/L TCE). For the remainder of Phase II, TCE was below the action level at wells S137A and S159A.

Concentrations of cis–DCE also dropped below the action level of 6 µg/L after 90 days at \$137A and after two quarters (180 days) at \$159A. Cis–DCE, however, began to rebound above the action level at \$137A in the third quarter. Cis–DCE also rebounded in \$139A after 90 days and resulted in a higher concentration than Phase II baseline and a return to the original Phase I concentration. Vinyl chloride reached a maximum concentration 30–60 days after injections at the low–TCE wells. Vinyl chloride remained alevated at \$137A and \$130A, but decreased at \$150A, meeting

wells. Vinyl chloride remained elevated at S137A and S139A, but decreased at S159A, meeting the action level in the fourth quarter. Well S159A was the only groundwater well in the reactive zone to achieve complete dechlorination during Phase II because all COC action levels met within the Phase II timeframe. The fourth quarter vinyl chloride concentrations in wells S137A and S139A were higher than the Phase I and Phase II baselines, indicating reductive dechlorination of TCE and cis-DCE is occurring to generate this daughter product, however additional substrate is needed to complete the degradation pathway.

# 4.5.2.2 Mid-range TCE wells

Baseline monitoring indicated the predominant COCs at the mid-range wells were TCE and cis-DCE. TCE concentrations in September 2020 ranged from 500  $\mu$ g/L to 1,400  $\mu$ g/L at the mid-range wells. By the fourth quarter of Phase II, TCE concentrations were reduced by 71%, 99.8% and 68% at S141A, S143A and S160A, respectively as seen in Table 9 (page 2). This section describes the degradative pathways and VOC concentration trends observed during Phase II. Final

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



TCE contours for the treatability study area are shown in Figure 8, and plots showing TCE trends are included in Appendix H.

The molar and concentration plots for S141A, located at the north edge of injections, indicate TCE decreased as a result of the nearby injection (INJ-7), yet it rebounded after 90 days. Cis-DCE was generated and peaked after 30 days after which it decreased and returned to the original cis-DCE concentration. Vinyl chloride peaked after 60 days then slowly decreased yet remains above the baseline concentration. Ethene was generated and peaked after 60 days at which time it stabilized. The TOC retention time was days at this well, indicating that the ideal 20 mg/L TOC needed to sustain anaerobic treatment was not available. Additional substrate is likely needed in the area of this well to continue degradation.

Well S160A, located about 25 feet northeast of S141A, exhibited a TCE decrease then rebounded after 30 days. Cis–DCE did not peak as expected during the reductive dichlorination process, however it decreased throughout the performance time period. Vinyl chloride also did not peak as expected yet decreased and stabilized. Ethene was not generated in this well when compared to baseline, however the baseline concentration is unusually high when compared to other wells. Due to the lack of expected trends, sustained reductive dechlorination did not occur in this well. The TOC retention time was days, indicating that the nearby injection (INJ–7) had minor impact at S160A.

In well S143A, located on far west side of the Phase II treatability study area, TCE decreased as a result of injections at INJ-10 until 90 days after the injection, at which point TCE began a slight rebound. Cis-DCE increased and peaked 30 days after injections, then decreased until it rebounded after the third quarter (270 days post injection). Vinyl chloride also peaked 30 days after injections and rebounded after the third quarter. Ethene increased until 60 days after injections at which point it stabilized. The TOC retention time was nearly two quarters in this

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



well, indicating that the ideal 20 mg/L TOC needed to sustain anaerobic treatment was not available. Additional substrate is likely needed in the area of this well to continue degradation.

Despite the lack of the ideal amount of TOC to sustain treatment in the mid-range TCE wells, there was an immediate response to injections. One month after injections, TCE concentrations decreased by 81.4%, 97.0%, and 98.0% at S141A, S143A and S160A, respectively (see Table 9 page 2). At well S141A, the minimum TCE concentration observed was 220  $\mu$ g/L at the 90-day post-injection event. Cis-DCE at S141A initially increased after injections and decreased gradually during every monitoring event thereafter. After 60 days, vinyl chloride reached a maximum of 260  $\mu$ g/L at well S141A and remained above baseline concentration through the fourth quarter. Action levels were not met for any COCs at S141A, however final concentrations in this well were lower than the Phase I baseline values for all COCs except TCE and Freon 113.

Well S143A met the action level goals for TCE and cis–DCE after 60 days but rebounded slightly in the fourth quarter (cis–DCE 24  $\mu$ g/L; TCE 9.7  $\mu$ g/L). Vinyl chloride peaked after 30 days and approached the action level between days 60 and 90, before rebounding in the fourth quarter. Ethene concentrations at S143A increased from below detection at baseline to 950  $\mu$ g/L after 60 days. All final COC concentrations at this well were lower than Phase I baseline concentrations, except for vinyl chloride. Fourth quarter Phase II results are approaching action levels, except for vinyl chloride.

Due to elevated reporting limits (where sample dilution was needed to quantify cis-DCE), it is unclear if TCE action levels were ever reached at well S160A, although TCE concentrations approached action levels during two monitoring events (TCE <10 µg/L after 30 days; TCE <25 µg/L after 60 days). Cis-DCE concentrations were reduced by nearly 50% in Phase II but remained above action levels. Cis-DCE and TCE rebounded slightly in the fourth quarter. Well S160A had the highest baseline ethene concentration of all wells and vinyl chloride concentrations were much higher than other mid-range wells. However, concentrations of ethene and vinyl chloride

\\nwfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Auo- 22)



decreased 30 days after injections and remained low through the fourth quarter. As discussed earlier, based on daughter product trends, these decreases are likely not due to reductive dechlorination.

## 4.5.2.3 High-TCE wells

During baseline monitoring, groundwater wells \$138A, \$140A, \$146A and \$158A had the highest concentrations of TCE, cis–DCE and Freon 113 of all the wells in the study area. These wells are located in the middle of the Phase II treatment area. Wells \$138A, \$140A, and \$146A are also within the Phase I injection ROI. At the time of baseline sampling, cis–DCE was the predominant COC at the high–TCE wells, except at well \$146A where the TCE concentration was slightly higher (5,700 µg/L TCE; 4,200 µg/L cis–DCE), which could be attributed to Phase I treatment efforts Fourth quarter results show TCE was reduced from baseline concentrations by 99.9%, 98.7%, 28.1%, and 99.9% at \$138A, \$140A, \$146A and \$158A, respectively as seen in Table 9 (page 3). Well \$146A (28.1% reduction from baseline to Q4) achieved 96.5% reduction 60 days after injections but rebounded to baseline levels by the fourth quarter sampling event. An explanation of VOC rebounds is described in Section 4.5.3. This section describes the degradative pathways and VOC concentration trends observed during Phase II. Plots showing these trends are included in Appendix H.

After TCE was reduced in well \$138A following injections at INJ-5, cis-DCE decreased approximately 30 days post-injection as seen in the Appendix H plot (Figure H-3-5). It is suspected that the cis-DCE peak occurred within the first thirty days. Cis-DCE continued to decrease through 90 days (decrease of 92% from baseline) at which point it began to stall above action levels. Vinyl chloride began to increase after 30 days and peaked at 90 days post-injection (increase of 2,000% from baseline). After decreasing for two quarters, vinyl chloride rebounded slightly in the fourth quarter. Ethene exhibited an increasing trend through the post-injection monitoring process. By the fourth quarter, all COCs were above action levels at \$138A, although

\\nwfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Auo- 22)



the reporting limit for TCE was elevated (TCE result of non-detect  $<10~\mu g/L$ ). While rebound occurred, these trends indicate reductive dechlorination is occurring at this well. The TOC retention time at this well was four quarters, indicating substrate is still available to sustain anaerobic treatment. Thus rebound is likely due to a factor other than lack of substrate. Further monitoring is also recommended to see if the remaining substrate may continue to aid in degradation.

TCE in well S140A decreased substantially in the first 30 days, rebounded then decreased again after 90 days post-injection. Cis-DCE was high in this well at the start of injections and slightly increased 60 days post-injection. Cis-DCE returned to near baseline by the end of the performance timeframe. Vinyl chloride increased after 30 days, decreased, then rebounded at 270 days. Ethene increased from baseline, slightly decreased, then resumed increasing. The nearby injection was INJ-8. TOC retention time at this wall was 60 days, indicating the ideal 20 mg/L TOC needed to sustain anaerobic treatment was not available. Additional substrate is likely needed in the area of this well to continue degradation.

TCE initially decreased in well S146A, then rebounded after 90 days post-injection (see Appendix H molar plot in Figure H–2–10). Cis–DCE increased and peaked after 60 days then decreased until the third quarter, after which it rebounded. Vinyl chloride increased and peaked during the second quarter (although the analysis was out of hold), then decreased before slightly rebounding after third quarter. Ethene did not appear to increase during the performance timeframe. The rebounding and lack of ethene generation indicate reductive dechlorination was limited. In addition, the TOC retention time at this well was two quarters, indicating the ideal 20 mg/L TOC needed to sustain anaerobic treatment was not available. Furthermore, the injection delivery tool used at the nearest upgradient injection point (INJ–3) was the PAIP instead of the TDIP used at other injection locations. Using this tool, sustained pressures and flowrates were limited at 70–100 PSI and 3.8 – 20.2 gpm with periodic tool clogging. Additional substrate will be needed in

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



the area of this well to continue degradation, and it is recommended that the TDIP be used instead of the PAIP to ensure adequate injectate distribution.

Well S158A, located on the southern end of the Phase II treatability area and within the ROI of INJ-9, exhibited reductive dechlorination trends for much of the performance monitoring period (see Appendix H molar concentration plot in Figure H-2-11). TCE decreased until the third quarter after which it rebounded. Cis-DCE increased by 286% 30 days after injections, peaked 60 days after injections, then decreased to below baseline, however rebounded after the third quarter. Vinyl chloride increased until the second quarter, decreased, then rebounded after the third quarter as well. Ethene was generated in this well as a result of the reductive dechlorination process and stabilized after the second quarter. By the fourth quarter, all COCs were above action levels at S158A, although the reporting limit for TCE was elevated (TCE result of non-detect <10 µg/L). The TOC retention time in this well is four quarters and contained 210 mg/L TOC, substantially above the recommended amount. Because the rebound occurred in fourth quarter sampling event, further monitoring is recommended in this well to ensure these concentrations are not anomalous.

While rebounding occurred frequently in the high–TCE wells, TCE was readily reduced following injections. After 30 days, TCE decreased by 96%, 97%, 94% and 68% compared to baseline conditions at \$138A, \$140A, \$146A and \$158A, respectively. Cis–DCE remained high or increased after 30 days with concentrations ranging from  $8,500~\mu g/L$  to  $44,000~\mu g/L$ . High cis–DCE concentrations resulted in elevated reporting levels for VOCs other than cis–DCE during Phase II, especially for these high–TCE wells. This is due to sample matrix interference where analytes present at very high concentrations interfere with the laboratory's ability to accurately detect analytes present at very low concentrations (refer to Appendix G). Although the TCE action level may have been met during the first and fourth quarters (the reporting levels were elevated at 50  $\mu g/L$  and  $10~\mu g/L$ , respectively), the only result confirmed to meet the  $5~\mu g/L$  action level was

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



S158A in the third quarter when cis-DCE concentrations significantly decreased and TCE was detected at 2  $\mu g/L$ .

As previously mentioned, cis-DCE stalled at S140A and S146A during Phase II, with final cis-DCE concentrations near or above baseline concentrations. In the Phase I evaluation report, stalling of cis-DCE degradation at S140A was linked to high Freon 113 concentrations (Locus Technologies, 2018). Freon 113 inhibits reductive dechlorination by DHC (specifically *Dehalococcoides mccartyi*) in a concentration-dependent manner, causing cis-DCE stalls (Im J, 2019). The relationship between concentrations of Freon 113 and stalling of cis-DCE degradation is discussed in the Freon Concentrations Section 4.9.

#### 4.5.3 VOC Stalls and Rebounds

One of Phase II Work Plan Test Goals listed in Section 2 is to mitigate VOC rebounds by increasing the carbon availability across the study area. The VOC concentration trends reviewed in Section 4.5.2 identified instances of potential stalling and/or rebounding at monitoring locations in the treatability study area and attributed much of the rebounding to lack of substrate retention time. This section discusses additional potential reasons for VOC stalls and rebounds at EAB sites.

Stalling refers to concentrations of VOC that remain relatively constant over time. The reductive dechlorination process may stall, even under favorable reducing conditions, if concentrations of competing compounds are elevated. For example, during Phase I, high sulfate and Freon 113 were observed to cause potential stalling inside the reactive zone (Locus Technologies, 2018).

Studies have shown that stalling at cis-DCE and vinyl chloride can occur if elevated sulfate concentrations coexist with low TOC concentrations (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Stalling at cis-DCE may also result if Freon 113 concentrations are elevated. Studies show Freon 113 inhibits reductive dechlorination by DHC (specifically DHC *mccartyi*) in a concentration-dependent manner, causing cis-DCE stalls (Im J, 2019). Finally, stalling may also arise if reducing conditions are insufficient. Under mildly anaerobic conditions,

\\nwfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auo--22)



vinyl chloride may accumulate at a faster rate than vinyl chloride is degraded, causing concentrations of VOCs to stabilize (Parsons, 2004).

Rebound is a post-treatment phenomenon that causes aqueous-phase VOC concentrations to increase following sharp declines in VOC concentrations. There are a few common causes of rebound. Rebounding caused by groundwater transport (advection) may cause a rebounding effect at downgradient wells, especially if the upgradient wells contain very high VOC concentrations comparatively (Air Force, 2007). Rebounding may also arise from diffusion of VOCs from high concentration areas to lower concentration areas. Also, rebounding of VOCs after initial improvement may be caused by matrix back-diffusion, which occurs when VOCs that adsorbed onto aquifer sediments or other constituents are later released back into the aqueous phase from diffusive forces (ITRC, 2020). At enhanced in-situ sites applying SRS-SD substrate, rebounding may appear due to a phenomenon called sequestration, in which VOCs in the groundwater partition into the substrate after injections, substantially reducing VOC concentrations in the aqueous state. As unpartitioned VOCs are degraded in the aqueous state, additional chlorinated solvent mass will be released from the substrate due to equilibrium partitioning, causing a rebound in VOC concentrations (Air Force, 2007).

#### 4.6 Redox conditions

Reduced environments are characterized by diminished levels of dissolved oxygen (DO) and by strongly negative oxidation-reduction potential (ORP) values (EPA, 1998). In a groundwater environment with sufficient carbon substrate, native electron acceptors are reduced in the following sequence (from most readily reduced to only reduced in strongly reducing environments): nitrate, manganese, ferric iron, sulfate, then carbon dioxide (methanogenesis). Similarly, reductive dechlorination of ethenes and ethanes is promoted under reduced conditions. The more highly chlorinated (more oxidized) VOCs, such as PCE and TCE, tend to reduce more readily under anaerobic conditions, and the less-oxidized VOCs, such as cis-DCE and vinyl

\\nwfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Auo- 22)



chloride, are already somewhat reduced and require more reduced conditions (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Insufficient redox conditions may lead to accumulations of these less-oxidized VOC, refer Section 4.5.3, which discusses cis-DCE and vinyl chloride stalls.

Monitoring electron acceptors and VOC species over time provides multiple lines of evidence necessary to evaluate the remedial effectiveness of EAB applications. Table 10 presents a summary of key redox species for ease of comparison over time at each monitoring well. Tables 4 and 6 include all post-injection groundwater quality monitoring data.

#### 4.6.1 Oxidation Reduction Potential

The ORP of groundwater provides data on whether or not anaerobic conditions are present. This measurement alone is insufficient and must be used in conjunction with other geochemical parameters to express the extent of the reducing conditions in groundwater. In general, positive ORP values in conjunction with elevated DO and absence of substrate can indicate that additional substrate is required to promote reductive dechlorination by biodegradation. However, if ORP measurements are negative, the likelihood of reductive dechlorination can be estimated by the magnitude of the negative ORP measurement. For example, ORP less than –50 mV indicates reductive dechlorination is possible, ORP values less than –100 mV means dechlorination is likely, and ORP under –150 mV is ideal. Plots showing DO and ORP are available in Appendix H (Figures H–4–0 through H–4–13).

During the baseline monitoring event, ORP values ranged from +120.9 mV to -144.6 mV in the reactive zone. The only positive ORP measurements were detected in the mid-range TCE wells in the northwest region of the reactive zone (S141, S143A, and S160A). All other wells in the reactive zone had negative ORP values during baseline monitoring, with the high-TCE wells registering the most strongly negative ORPs. The ORP measurements decreased during the injection period from 10–20 November 2020 as seen in Table 2. After 30 days, ORP values ranged from -116.0

\\mvfile.embla.com\Projects\Projects\P\fhilips\Anques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Aug-22)



mV to -310.2 mV in the reactive zone, indicating favorable reducing conditions for dechlorination. The most strongly negative ORP values were detected in the center of the treatability study area at the high-TCE wells.

All monitoring wells in the reactive zone remained below baseline ORP values through the final post-injection monitoring event in November 2021. However, two mid-range wells, S141A and S160A, had marginal ORP values in the fourth quarter (-70.7 mV and -55.7 mV, respectively). These mid-range wells also had the highest ORP values (least reducing) during baseline monitoring. The ORP values remained in the favorable range for dechlorination through the fourth quarter at the high-TCE and low-TCE wells (<-100mV ORP).

## 4.6.2 Dissolved Oxygen

The extent of reducing conditions in groundwater can be informed by DO measurements. DO must be depleted to less than 0.5 mg/L in the groundwater in order to establish a reductive dechlorination pathway (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Plots showing DO and ORP are available in Appendix H (Figures H-4-0 through H-4-13). Baseline monitoring from September 2020 confirmed that the subsurface of the reactive zone was at an anaerobic state (< 0.5 mg/L) prior to Phase II injections, except for one monitoring location that was slightly above the DO threshold (S143A at 0.7 mg/L). Up-gradient and down-gradient wells were also below the DO threshold, which is not expected outside the reactive zone, thus baseline DO measurements may not be representative.

During injections on 10–20 November 2020, DO temporarily increased within the reactive zone and immediately downgradient at S049A. DO concentrations returned to below 0.5mg/L at all monitoring locations in the reactive zone 30 days after injections, except for at two monitoring wells that were still slightly elevated (S141A 0.53 mg/L; S137A 0.57 mg/L). DO concentrations were below 0.5mg/L at all locations in the reactive zone during 60 days after injections, ranging

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



from 0.22mg/L to 0.45mg/L, refer to the DO concentrations in the summary of redox conditions in Table 10.

Field technicians encountered an instrumentation error during the Month 3 monitoring event on 15–17 February 2021. DO was elevated at all monitoring locations in the reactive zone and ranged from 1.19 mg/L to 1.39 mg/L. Field technicians performed a re–sampling event the following month on 15–16 March 2021 using two YSI Pro–DSS meters arranged in parallel to collect replicate field measurements at all monitoring locations in the reactive zone. The resampling event confirmed DO in the reactive zone was not elevated (DO ranged from 0.37 mg/L to 0.54 mg/L). The DO probe in the YSI Pro–DSS is highly sensitive to salinity and temperature, and long–term exposure chemicals such as chlorinated solvents can alter the sensor's performance (YSI Incorporated, 2009). After the re–sampling event, calibration procedures changed (see Field QAQC section of Appendix G for details).

Despite more stringent calibration regimes, field technicians encountered another instrumentation error during the Quarter 2 monitoring event in May 2021. DO concentrations were elevated at all monitoring locations in the reactive zone (1.92 mg/L to 2.70 mg/L). Field technicians continued to collect DO measurements using the YSI Pro-DSS meter during the Quarter 3 and Quarter 4 monitoring events; however, the optical probe materials could potentially be damaged from the presence of solvents in the groundwater or from general wear and tear causing scratches on the paint layer protecting the sensor, and issues during calibrations. DO concentrations in the reactive zone ranged from 0.55mg/L to 0.75 mg/L in Quarter 3, and 0.59mg/L to 0.84mg/L Quarter 4 monitoring. Although DO concentrations were detected above the 0.5 mg/L threshold for anaerobic conditions, other geochemical indicators suggest the reactive zone was in a reductive state. These indicators will be discussed in the subsequent sections.

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



#### 4.6.3 Nitrate

Nitrate concentrations decrease under mild reducing conditions in groundwater and typically after DO is depleted to concentrations <0.5 mg/L. Nitrate results are shown in Table 10. During baseline monitoring on 14–16 September 2020, nitrate was below the reporting limit (<1.3 mg/L) at all wells in the reactive zone. Despite elevated DO in later Phase II monitoring events, nitrate concentrations remained non-detect, serving as one line of evidence that the reactive zone was in a reducing state for the remainder of Phase II monitoring.

#### 4.6.4 Ferrous Iron

Ferrous iron species accumulate in the groundwater in strongly reducing environments. Elevated levels of ferrous iron, caused by the reduction of ferric iron, indicate that the groundwater environment is sufficiently reducing to sustain iron reduction. At this state, reductive dechlorination of highly chlorinated VOCs, such as PCE and TCE, may occur if competition from other electron acceptors is low. Concentrations of ferrous iron from Phase II are plotted in Appendix H (Figures H–5–0 through H–5–13) and summarized in Table 10 for the reactive zone wells.

Baseline ferrous iron concentrations, measured in September 2020, were in the range of 0.0 mg/L to 2.0 mg/L in the reactive zone of the treatability study area. Only high–TCE wells S138A, S140A and S146A, and low–TCE well S139A, had detectable ferrous iron concentrations before injections. These wells were in the ROI of the Phase I injections, which indicates the former reactive zone continued to exhibit reducing conditions at the start of Phase II. The downgradient monitoring wells (S025A, S049A and S088A) and the background well (S134A) had no detectable ferrous iron during baseline monitoring.

Ferrous iron concentrations ranged from 0.5 mg/L to 5.0 mg/L in the reactive zone 30 days after injections. The downgradient monitoring wells (S025A, S049A and S088A) had detectable concentrations of ferrous iron, but ferrous iron was not detected in background well (S134A).

\\mvfile.embla.com\Projects\Projects\P\flufips\Anques\ASAOC\_defiverables\Bioremediation\_phase#\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean\_docx (5--Aug- 22)



Monitoring wells S138A, S140A, S146A, and S139A which had detectable ferrous iron during baseline monitoring, experienced a sharp increase in ferrous iron after injections, then dropped baseline or below baseline 30 days after injections. As mentioned earlier, these wells were in the Phase I reactive zone and still subject to reducing environment at the time of Phase II injections, Ferrous iron concentrations increased after 30 days at the mid-range wells and low-TCE well S159A.

By 60 days after injections, ferrous iron ranged from 0.0 mg/L to 5.5 mg/L in the reactive zone. Of the wells that had detectable ferrous iron during baseline monitoring (\$138A, \$139A, \$140A and \$146A), wells \$138A or \$139A had no detectable ferrous iron during the Month 2 event, while \$140A and \$146A returned to baseline levels (0.5 mg/L and 1.0 mg/L, respectively).

Of the monitoring wells in the reactive zone, only \$138A and \$140A had lower ferrous iron concentrations than baseline levels as of Quarter 4 monitoring in November 2021. All other wells had increased above baseline ferrous iron concentrations.

## 4.6.5 Sulfate and Sulfide

Sulfate is an alternate electron acceptor for microbial respiration in the absence of oxygen, nitrate, manganese, and ferric iron. Sulfate reduction typically occurs when the groundwater is at a highly reducing state and produces sulfide as a by–product. Depleted sulfate concentrations relative to baseline conditions indicate that the redox environment is sufficient for reductive dechlorination. Sulfate concentrations less than 20 mg/L are desirable but not required for reductive dechlorination of VOCs (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). High levels of sulfate and the absence of carbon substrate (low TOC) may indicate that additional substrate is necessary to promote biodegradation. Concentrations of sulfate and sulfide from Phase II are plotted in Appendix H (Figures H–6–0 through H–6–13).

Sulfate levels in the reactive zone were comparable to up/downgradient wells during baseline monitoring with concentrations ranging from 130 mg/L to 240 mg/L at the up/downgradient

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



wells, and sulfate in the reactive zone ranging from 110 mg/L to 190 mg/L. However, 30 days after injections, sulfate concentrations in the reactive zone decreased substantially (except for S160A), while the up/downgradient wells remained elevated. Sulfate concentrations at the low–TCE wells decreased to <20 mg/L after 30 days (1.0 mg/L at S137A; <5.0 mg/L at S139A; 6.8 mg/L at S159A). Of the mid–range wells, only S143A reached <20 mg/L after 30 days, while S141A decreased to 89 mg/L and S160A increased to 130mg/L. Sulfate concentrations decreased at the high–TCE wells but only wells S138A and S146A were <20 mg/L at 30 days post–injection. Sulfate concentrations remained very low at S138A, S158A and S159A during each post–injection monitoring event, including the final monitoring event in 8–10 November 2021, indicating that the strongest reducing conditions may be present at these wells. These wells also had the longest TOC retention times, shown in Figure 6. During the fourth quarter monitoring, sulfate concentrations were above 20 mg/L at all other wells in the reactive zone, and TOC was depleted indicating that additional substate may be required to promote reductive dechlorination (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021).

Sulfide is a by-product of sulfate reduction and increases as sulfate decreases. Sulfide typically precipitates with iron minerals, but in absence of iron compounds, sulfide may accumulate and become toxic to dechlorinating bacteria. Sulfide concentrations were highest at S138A and S146A; however, sulfide does not appear to have affected DHC populations at these wells as concentrations remained above screening criteria through all of Phase II.

# 4.7 Dissolved Gases

#### 4.7.1 Carbon Dioxide

Carbon dioxide is generated from the fermentation of the substrate carried out by microbes and utilized as an electron acceptor in the methanogenic process. It is a by-product of both aerobic and anerobic degradation. Elevated carbon dioxide above baseline concentrations indicate microbial activity has been stimulated (EPA, Bioremediation Anaerobic Bioremediation (Direct),

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



2021). The concentration of carbon dioxide over the performance period is shown in time series plots in Figures H-7-0 through H-7-11 (Appendix H) and summarized in Table 10, along with other key redox parameters for this evaluation.

Baseline concentrations of carbon dioxide detected in the treatability area ranged from 20.0 mg/L to 78.7 mg/L, with a median value of 27 mg/L. Following the injections, the median carbon dioxide concentration increased to 99.5 mg/L after 30 days (range of 23 mg/L to 284 mg/L in reactive zone). Table 10 shows Phase II carbon dioxide results and statistics.

Microbial activity appeared stimulated by injections during month 1 monitoring event; however, many wells in the reactive zone dropped back to baseline carbon dioxide concentrations after 60 days. This phenomenon was observed at all high-TCE wells and at well S143A, the most western well in the reactive zone. The low-TCE wells and two of the mid-range wells (S141A and S160A) remained stable or increased slightly at 60 days.

Of the high-TCE wells, carbon dioxide concentrations indicate that the most microbial activity occurred at well S158A, where carbon dioxide reached a maximum of approximately 400 mg/L in the fourth quarter. Despite indicators such as VFA concentrations and TOC that implied substrate availability at mid-range TCE wells was poor, carbon dioxide concentrations continued to trend upward through the fourth quarter, with final concentrations of 219 mg/L, 140 mg/L and 271 mg/L at S141A, S143A and S160A, respectively. In the low-TCE wells, carbon dioxide peaked during the 60-day monitoring event at S159A (284 mg/L), and during the final monitoring event at S137A and S139A (155 mg/L and 121 mg/L, respectively).

The fourth quarter sampling results show carbon dioxide concentrations were above baseline conditions. The median carbon dioxide concentration during the fourth quarter was 147.5 mg/L, compared to 27 mg/L during baseline. This was the case for the wells inside the reactive zone, as well as for monitoring locations upgradient and downgradient (wells \$134A and \$049A).



Carbon dioxide trends correlate with the levels of alkalinity observed across the study area, refer to Appendix H plots of alkalinity (Figures H-11-0 through H-11-11).

## 4.7.2 Dissolved Hydrogen

Hydrogen is generated by fermentation of carbon substrate and is rapidly consumed by other bacteria, such as denitrifiers, iron-reducers, sulfate-reducers, methanogens, and dechlorinating microorganisms, such as DHC. These microbes consume available hydrogen at varying efficiencies, with the lower redox state bacteria being the most efficient and higher reducing conditions producing the least efficient hydrogen consumption rates. Therefore, it is possible to estimate the redox state of the groundwater, given the hydrogen concentration. Time series plots showing Phase II hydrogen concentrations are available in Appendix H (Figures H–8–0 through H–8–11).

At hydrogen concentrations less than 0.1 nmol/L (nM), hydrogen is consumed at a very efficient rate, and the redox state of the groundwater is at a denitrification state. Studies show that hydrogen concentrations from 0.2 – 0.8 nM indicate conditions are in the iron (III) reduction redox state; hydrogen of 1 – 4 nM indicate a sulfate reducing redox state; and hydrogen from 5 – 20 nM indicate methanogenesis (Air Force, 2007). Concentrations less than 2 nM may indicate that additional substrate may be required if TOC levels are depleted (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021).

Additionally, dechlorinating bacteria must successfully compete against other microorganisms that also make use of hydrogen. Existing guidance documents suggest that high sulfate levels may be problematic for reductive dechlorination of VOCs because the presence of elevated concentrations of sulfate can decrease the utilization of substrate for biotic dechlorination of chlorinated solvents (Air Force, 2007). However, the presence of sulfate does not preclude successful EAB applications, refer to Phase II sulfate concentrations in Section 4.6.5.

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



During baseline sampling, the median hydrogen concentration in the reactive zone was 1.65 nM (range of 0.61 nM to 53 nM), refer to Table 10 for hydrogen concentrations and statistics. After injections, the median hydrogen concentration increased to 5.6 nM after 30 days. The high–TCE wells in the center of the reactive zone (S138A, S146A and S158A) measured hydrogen concentrations of 210 nM, 120 nM and 64 nM, respectively, after 30 days, which were the greatest of Phase II. Hydrogen concentrations at the background well were below detection 30 days after injections (<0.49 nM at S134A). Background hydrogen increased to above 1mg/L after 60 days, and during the second and third quarter monitoring events.

During the 60 day and first quarter monitoring events, hydrogen concentrations were consistently below 2 nM at S139A and S160A. However, by the second quarter monitoring event in May 2021, hydrogen exceeded 2 nM at every well in the treatability study area, indicating that redox conditions were conducive to reductive dechlorination. Hydrogen concentrations in the high-VOC wells ranged from 3.9 – 14 nM, signifying a methanogenesis redox state at this time (Air Force, 2007). Hydrogen at the low-TCE wells and mid-range TCE wells ranged from 2.2 – 4.4 nM, signifying a sulfate reduction state during the second quarter. In Phase I, it was concluded that sulfate reduction was the dominant redox process in the Phase I treatability area (Locus Technologies, 2018).

After the second quarter, hydrogen concentrations trended downward, and during the fourth quarter monitoring event, only wells \$138A and \$158A were in the optimal range for reductive dechlorination. Well \$159A was just below the optimal range. Additional substrate loading may be necessary to stimulate methanogenesis across much of the treatment zone since the desired threshold of 2 nM was not sustained.

#### 4.7.3 Methane, Ethane and Ethene

The measurement of dissolved gases such as methane, ethane and ethene in groundwater is an indication of bioremediation. Elevated levels of methane indicate fermentation is occurring in a

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



highly reducing environment and that subsurface conditions are appropriate for reductive dechlorination. Concentrations of ethene and ethane at levels at least an order of magnitude greater than background levels is evidence of reductive dechlorination of VOCs. However, rapid biodegradation of ethane and ethene often occurs, lowering concentrations of these non-toxic by-products. Time series plots showing Phase II methane, ethane and ethene concentrations are available in Appendix H (Figures H–9–0 through H–9–13).

The presence of methane above background conditions indicates methanogenesis is occurring and methane greater than 1.0 mg/L is desirable for biodegradation (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). During baseline monitoring, methane groundwater concentrations were elevated to >1.0 mg/L at wells \$137A, \$139A, \$146A and \$160A, refer to Table 10 for dissolved methane concentrations and statistics. The baseline concentration of methane ranged from 0.0035 mg/L to 8.1 mg/L in the reactive zone, and the background concentration at \$134A was 0.031 mg/L. After injections, a total of seven wells in the reactive zone reached methane concentrations of at least 1 mg/L after 30 days, but wells \$143A, \$158A and \$159A remained below 1 mg/L. The background methane concentration at \$134A decreased from 0.031 mg/L to 0.02 mg/L after 30 days and remained below 1 mg/L throughout the Phase II monitoring period.

In the second, third and fourth quarters, all reactive zone wells were above 1 mg/L except for wells S140A and S146A. Methane levels <1.0 mg/L and the accumulation of cis-DCE and vinyl chloride as seen in Table 9 may indicate that additional substrate or addressing other causes of stalling such as Freon 113 is required to shift reducing conditions into an environment suitable for reduction of these compounds. However, methane concentrations at S140A and S146A were still approximately an order of magnitude higher than background concentrations. Elevated methane concentrations (>1mg/L) were measured during the last three quarters at S049A,

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auc-22)



located immediately downgradient from the reactive zone; however, methane production was not evident at the adverse impact monitoring wells S025A and S088A, located farther downgradient.

Ethane and ethene are the final daughter products in the degradation of chlorinated ethanes and ethenes, respectively. Ethene production is discussed in depth in Section 4.5.2, along with the other TCE daughter products. Concentrations of ethene and ethane at levels at least an order of magnitude greater than background levels is evidence of reductive dechlorination of VOCs. During Phase II, ethene increased from baseline (assumed equivalent to background) levels by over two orders of magnitude at wells S137A, S141A, S143A and S158A; by approximately one order of magnitude at S139A and S159A; and by less than one order of magnitude at S138A, S140A and S146A. Ethene concentrations decreased from baseline at well S160A.

Compared to baseline conditions, ethane increased by over two orders of magnitude at well S137A; by approximately one order of magnitude at S143A, S158A and S159A; and by less than one order of magnitude at S138A, S139A, S140A, S141A and S146A. Ethane also decreased from baseline at S160A. Ethane was less concentrated than ethene across the treatability study area.

## 4.8 Biological Activity

Biodegradation of VOCs involves specialized microorganisms and hospitable environments. Dehalococcoides (DHC) is the only known bacterial group capable of complete reductive dechlorination of PCE to ethene. Studies show that populations of DHC in the groundwater at concentrations greater than  $1\times10^4$  cells/mL correspond to ethene production at both EAB and natural attenuation sites (Microbial Insights, 2021). This evaluation uses DHC as the indicator bacteria and concentrations  $>1\times10^4$  cells/mL as the screening criterion to identify areas of the reactive zone where bioremediation is predicted to proceed at generally useful rates. This is a more conservative screening threshold than what was stated in the Work Plan and used in the Phase I evaluation ( $>1\times10^3$  cells/mL), as recommended by recent studies and Microbial Insights laboratory guidance. Populations of DHC between  $1\times10^1$  cells/mL and  $1\times10^4$  cells/mL indicate

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5~Auc~22)



that other site-specific subsurface conditions may be limiting reductive dechlorination and are associated with less ethene production (Microbial Insights, 2021).

Prior to Phase II, efforts were made to quantify native bacterial species in the treatability study area. The initial quantification took place in 2009, in which DHC bacteria population in wells S134A (upgradient), S049A (downgradient) and S145A (unsampled during Phase II) were found to be present but below the DHC screening criterion at  $7.2\times10^{1}$  cells/mL,  $8.9\times10^{2}$  cells/mL, and  $1.2\times10^{2}$  cells/mL, respectively.

In October 2016 prior to Phase I injections, native DHC populations within the study area ranged from  $1.0\times10^{\circ}$  cells/mL to  $9.4\times10^{\circ}$  cells/mL (Locus Technologies, 2018). After Phase I injections, DHC populations increased in the Phase I treatability study area, and wells S137A, S138A and S139A exceeded the screening criterion of  $1\times10^{4}$  cells/mL by the third quarter monitoring event in August 2017. Accordingly, ethene production was most pronounced in these wells. Between baseline and the fourth quarter, ethene concentrations increased from <0.2  $\mu$ g/L to 220  $\mu$ g/L (100,000%) at S137A, from 0.24  $\mu$ g/L to 520  $\mu$ g/L (200,000%) at S138A, and from <0.2  $\mu$ g/L to 96  $\mu$ g/L (48,000%) at S139A (refer to Table 9). Wells below the screening criterion produced less ethene. During Phase I, there was a correlation between DHC populations and ethene production.

## 4.8.1 Direct Measurement

During Phase II of the treatability study, samples were collected for microbial evaluation during the baseline, 90-day, Quarter 3 and Quarter 4 monitoring events at twelve groundwater wells (no microbial samples from downgradient wells S025A and S088A). Between Phase I and Phase II, DHC populations fell to below the screening criteria at all wells in the study area as indicated by Phase II baseline concentrations seen in the Appendix H plots (Figures H-10-0 through H-10-11). However, ethene concentrations remained elevated at most wells in the reactive zone.

After Phase II injections, DHC populations surpassed 1x10<sup>4</sup> cells/mL in the reactive zone (confirmed during the 90-day monitoring event), except for well S160A which barely met the

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



target DHC. Upgradient and downgradient wells experienced negligible increases in DHC after 90 days. Despite S049A's proximity to the injections, DHC remained below 1x10<sup>4</sup> cells/mL through all post-injection monitoring events.

The highest DHC populations in Phase II were typically found in the high–TCE wells in the southern end of the study area. After injections, DHC concentrations were at least one order of magnitude above the DHC screening criterion of  $1\times10^4$  cells/mL at wells S138A, S158A and S140A throughout Phase II. Accordingly, these wells produced the most ethene. The maximum DHC concentration was detected during the final monitoring event at S138A at over two orders of magnitude above the DHC screening criterion (1.2×10 $^6$  cells/mL).

The mid-range and low-TCE wells, as well as S146A (high-TCE), exhibited concentrations around the DHC screening criterion of  $1\times10^4$  cells/mL during most of Phase II. However, during the third quarter monitoring event, wells S159A and S160A fell below  $1\times10^4$  cells/mL DHC and final DHC populations were  $2\times10^3$  cells/mL and  $4.7\times10^3$  cells/mL, respectively. This drop did not seem to affect the performance at S159A based on the VOC concentrations, however the lack of DHC and TOC at S160A indicates that not enough injection solution was present in the well.

During Phase II, functional genes produced by dechlorinating bacteria were also analyzed. VOC reductase genes provide a supporting line of evidence when evaluating the potential for accumulation of daughter products versus the potential for complete reductive dechlorination to ethene (Microbial Insights, 2021). The DHC strain functional genes evaluated include tceA reductase (abbreviated TCE, not to be confused with trichloroethene), Vinyl Chloride Reductase (VCR), and BAV1 Vinyl Chloride Reductase (BVC). These DHC functional genes encode reductive dehalogenases that dechlorinate TCE, cis-DCE and vinyl chloride. Refer to the microbial population plots in Appendix H (Figures H-10-0 through H-10-11).

The functional gene TCE indicates the potential for dechlorination of TCE, but the absence of TCE gene does not preclude the potential for reductive dechlorination. Populations of the TCE gene

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



followed a similar geospatial trend to DHC, with the highest TCE genes typically found at the high-TCE wells, especially during the final two monitoring events. The up-gradient and down-gradient wells, S134 and S049A, generated substantially fewer TCE genes than the wells in the reactive zone.

The functional gene VCR encodes a DHC reductase enzyme responsible for dechlorination of cis-DCE and vinyl chloride to ethene. The BVC gene encodes an enzyme that dechlorinates vinyl chloride to ethene. The absence of both VCR and BVC genes suggest vinyl chloride may accumulate (Microbial Insights, 2021). During Phase II, BVC was below detection in the treatability study area. The amount of VCR in reactive zone wells increased after injections. Like other microbial indicators have shown (DHC and TCE gene), VCR was lower in the up/down gradient wells, and this was true throughout Phase II. The lowest VCR populations in the reactive zone were found in well S146A, which was on the higher end of the spectrum for DHC and TCE genes. As seen in Table 9, Vinyl chloride rebounded at well S146A in the fourth quarter, cis-DCE remained elevated during Phase II and TCE rebounded in the third quarter at this well. Because vinyl chloride has accumulated in other wells, the functional genes VCR and BVC do not appear to accurately reflect the site dechlorination conditions and are not recommended to be used in the future as indicator parameters.

#### 4.8.2 pH and Alkalinity

While microbial populations can tolerate a wide pH range, a neutral pH of between 6 and 8 is most conducive to the microbial growth (Parsons, 2004). Fermentation of substrates to metabolic acids and hydrochloric acids during dechlorination may decrease the pH substantially in low-alkalinity groundwater environments; therefore, monitoring of pH and alkalinity is crucial in the treatability zone. Concentrations of alkalinity that remain at or below background in conjunction with pH above 5 indicates that additional buffering agent could be required to sustain high rates of anaerobic dechlorination (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021).

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



Temporal plots showing trends in pH and total alkalinity are available in Appendix H (Figures H-11-0 through H-11-11).

Baseline total alkalinity at groundwater wells inside the reactive zone ranged between 350 mg/L and 690 mg/L (see Table 6). Fourth quarter alkalinity increased above baseline reactive zone wells except for \$146A. Alkalinity increased most at wells \$137A, \$141A, \$158A, and \$159A. Alkalinity correlated with trends in carbon dioxide, see Appendix H plots and carbon dioxide discussion in Section 4.7.1.

Baseline pH values ranged from 6.60 - 7.12 in the reactive zone with the median pH of 6.95. During injections, the pH mostly decreased but then returned to nearly baseline levels through the remainder of Phase II. In the fourth quarter, the median pH in the reactive zone was 6.72, and pH values ranged from 6.44 - 7.20.

The buffering capacity of the reactive zone sustained pH levels within recommended values throughout the study. A slight increase in alkalinity was observed across the treatability area with the exception of high-TCE well S146A, which still maintained a pH above 6, thus microbial populations in the reactive zone had a conducive growth environment in terms of pH and alkalinity.

#### 4.9 Freon 113 Concentrations

Quantification of the effectiveness of injections at promoting anaerobic degradation of Freon 113 in wells S140A and S141A is one of the Phase II objectives stated in Section 2. This section reviews trends in Freon 113 concentrations in these key wells, as well as monitoring locations across the expanded Phase II treatability study area. Refer to Appendix H plots (Figures H–2–14 through H–2–27 Freon 113 molar concentrations; Figures H–3–14 through H–3–27 show units of micrograms per liter) and the summary of key analytical results in Table 9.

\\mwfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phaseii\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



During baseline monitoring, the background concentration of Freon 113 was non-detect (<2.0  $\mu$ g/L at S134A) and was only detected at one downgradient well (S025A at a concentration of 5.1  $\mu$ g/L). Freon 113 in the reactive zone was most concentrated in the high-TCE wells with concentrations of 1,500  $\mu$ g/L at S158A, 2,000  $\mu$ g/L at S138A and 4,300  $\mu$ g/L at S146A. The next highest Freon 113 concentration was observed at S141A (240  $\mu$ g/L). The rest of the mid-range and low-TCE wells had Freon 113 concentrations less than 25  $\mu$ g/L during baseline monitoring.

Freon 113 in all high-TCE wells remained elevated approximately 30 days after injections, while concentrations in the rest of the reactive zone decreased. At high-TCE wells \$138A and \$158A, Freon 113 increased by 80% and 93% after approximately 30 days following injections, respectively. Wells \$138A and \$158A increased once more during Month 2 monitoring approximately 60 days after injections (53% and 62%, respectively).

Approximately 90 days after injections, Freon 113 in the high-TCE wells decreased from Month 2 concentrations by 55%, 43%, 21% and 37% at the high-TCE wells S138A, S140A, S146A and S158A, respectively. For the next three quarterly monitoring events, Freon 113 concentrations continued to decline at wells S138A. Freon 113 concentrations rebounded at S158A during the fourth quarter (79  $\mu$ g/L to 860  $\mu$ g/L) but remained below baseline concentrations.

Approximately 360 days after injections, Freon 113 decreased to 630 µg/L at S140A but increased to 6,100 µg/L at S146A. Freon 113 degradation was least apparent at these high-TCE wells, with final Phase II Freon 113 concentrations above or near baseline conditions. Freon 113 inhibits reductive dechlorination by DHC (specifically *Dehalococcoides mccartyi*) in a concentration-dependent manner, causing cis-DCE stalls (Im J, 2019). During Phase I, high concentrations of Freon 113 at well S140A were attributed to stalling in cis-DCE degradation, as discussed in the Phase I evaluation report (Locus Technologies, 2018). Again during Phase II, cis-DCE stalled at S140A as well as S146A (refer to Section 4.5.2.3). High Freon 113 concentrations were likely a contributing factor in the stalling. Compared to Phase I baseline concentrations, cis-

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



DCE increased by 96.3% and 1,248% at \$140A and \$146A, respectively, across the Phase I and Phase II monitoring periods.

Concentrations of Freon 113 remained non-detect or very low (<5.2  $\mu$ g/L) in the downgradient and background wells throughout Phase II. Freon 113 at the low–TCE and mid–range TCE wells trended downward throughout the Phase II monitoring period, except for mid–range well S141A, which experienced rebounding of Freon 113 during the second quarter increasing from 22  $\mu$ g/L to 120  $\mu$ g/L. Freon 113 concentrations decreased during the fourth quarter at S141A to 51  $\mu$ g/L. From baseline to the fourth quarter, Freon 113 concentrations at wells S138A, S139A, S141A, S143A, S158A and S159A were reduced by 80%, >50%, 79%, >94%, 43% and >98%, respectively. Freon 113 concentrations at wells S137A, S140A and S160A were below the action level throughout Phase II monitoring. Only well S146A increased from baseline concentrations by approximately 42%.

## 4.10 Volatile Fatty Acids (VFAs)

Volatile fatty acids (VFAs) are produced during fermentation of the substrate. Elevated concentrations of VFAs indicate microbial activity and substrate distribution. Key VFAs monitored during Phase II include lactic acid, acetic acid, pentanoic acid, propionic acid, pyruvic acid, and butyric acid. Concentrations of VFAs greater than 10 mg/L to 20 mg/L indicate that sufficient levels of substrate is available for redox processes to proceed (EPA, Bioremediation Anaerobic Bioremediation (Direct), 2021). Insufficient VFA concentrations imply additional substrate is required. Plots of VFAs are available in Appendix H (Figures H–12–0 through H–12–11), shown with the lower VFA threshold of 10 mg/L.

Acetic acid was the most prevalent VFA produced in the reactive zone. During baseline monitoring, acetic acid was present but in low concentrations in all wells in the reactive zone (0.31 mg/L to 3.6 mg/L), as well as at the upgradient and downgradient wells (range of 0.3 mg/L to 0.41 mg/L). One month after injections, acetic acid concentrations increased to >20 mg/L at

\\mvfile.emhia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phazell\\2\_revised\_EAB,Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx (5~Aug~22)



all wells in the reactive zone except wells \$141A and \$160A (well \$141A was within the lower end of VFA threshold at 12 mg/L). Through the fourth quarter, acetic acid concentrations remained greater than 20 mg/L at wells \$138A and \$158A, and above 10 mg/L at \$159A. There is correlation between acetic acid concentrations and TOC retention times, in which the lowest TOC retention times and acetic acid concentrations are found at \$141A and \$160A, while the highest TOC retentions and acetic acid concentrations are at wells \$138A, \$158A and \$159A.

Lactic acid was the only VFA at S160A to breach 10 mg/L, which occurred during the fourth quarter (<0.53 mg/L to 17 mg/L). Similarly, during the fourth quarter, lactic acid concentrations increased from below detection (<0.53mg/L) to above the VFA threshold of 10 mg/L at wells S139A, S140A, S141A, S143A, and S158A.

Other VFAs monitored in Phase II only surpassed the VFA concentration threshold at a few high-performing wells in the reactive zone. Butyric acid exceeded 10 mg/L only at wells S158A and S159A. Concentrations of pentanoic acid, propionic acid and pyruvic acid exceeded 10 mg/L only at well S159A, which is the only monitoring location to achieve complete reductive dechlorination of VOCs to below action levels (refer to VOC concentrations at low-TCE wells Section 4.5.2.1). Thus, acetic acid seems to be the most useful VFA indicator for this injection solution and site, and the collection and evaluation of other VFAs is not recommended for future evaluations.

## 4.11 Adverse Condition Monitoring

Wells in the area of the EAB treatability study area were monitored for adverse conditions that may inadvertently be caused by the introduction of EAB products in the subsurface. Monitoring and sampling were conducted using Table 4 of the Work Plan. This evaluation was limited to two metals which can be released under reducing conditions, manganese and arsenic. This discussion also addresses potential EAB induced VOC increases outside the Phase II reactive zone.

Concentrations of manganese and arsenic were compared upgradient of the study area, within the study area, and within two wells downgradient of the study area, S025A and S088A. As

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



previously discussed, arsenic and manganese laboratory methods changed to dissolved analysis second quarter 2021 after it was discovered that total metals were erroneously collected and analyzed from baseline through first quarter. However, because total metal concentrations represent the dissolved (soluble) and particulate (insoluble) states, it is more conservative and will still be used in conjunction with dissolved metals for this analysis.

## 4.11.1 Manganese

Manganese monitoring data are presented in Table 4 and plotted in Appendix H (Figures H–13–0 through H–13–13). Manganese concentrations in upgradient well S134A, which represents background conditions for this study, were relatively stable or slightly decreasing concentration with an average around 450  $\mu$ g/L. Within the treatment area, manganese concentrations increased after injections, then decreased or remained stable during the performance monitoring period. For example, well S138A located in the middle of the Phase II treatment area (also within the Phase I treatment area) (Figure 2), increased from a baseline concentration of 340  $\mu$ g/L to 1800  $\mu$ g/L 90 days after injections and remained elevated above baseline through the performance monitoring period. Well S158A, a well located on the north end of the Phase II treatment area, and newly installed for this phase, exhibited an increase in manganese concentrations through the third quarter (14,000  $\mu$ g/L) then decreased fourth quarter. Thus, as expected, manganese concentrations increased in response to the injection solution in the Phase II treatability study area.

Well S049A, located approximately 40 feet downgradient of the Phase II treatability area, had a slight increase in manganese approximately 180 days after injections, then decreased to below baseline levels. Well S088A, located approximately 120 ft downgradient of the Phase II treatability area, did not demonstrate an increase in manganese concentrations. Well S025A, which is 364 feet downgradient of the Phase II treatability area, also did not demonstrate an increase in manganese concentrations. Both wells slightly decreased in concentrations over the Phase II

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



monitoring, similar to the background well. Because wells furthest downgradient of the treatment area did not exhibit an increase in manganese concentrations, this indicates the impacts of the injection solution largely remain around the treatment area and are not creating an adverse condition with respect to manganese outside the area.

### 4.11.2 Arsenic

Arsenic monitoring data are presented in Table 6 and plotted in Appendix H (Figures H-13-0 through H-13-13). Because of non-detect results with elevated laboratory reporting limits, comparisons against baseline arsenic concentrations could not be made with certainty. Non-detect results were also reported periodically in various wells throughout the performance monitoring period. Thus, evaluations for arsenic impacts are limited to comparisons against background.

Arsenic concentrations in the upgradient background well S134A were non-detect or estimated around 8–10, approximately 90–270 days after injections. The highest arsenic concentrations within the treatability area were noted in wells S139A, with a maximum arsenic concentration of 63  $\mu$ g/L. Wells S137A, S140A, S143A, S146A, S158A, S159A, and S160A also exhibited arsenic concentrations above background from an estimated 15  $\mu$ g/L - 21  $\mu$ g/L. Well S049A, just downgradient of the treatability study area was non-detect for most events with two estimated concentrations of no more than 12  $\mu$ g/L. Downgradient wells S025A and S088A post-injection concentrations were non-detect with reporting limits between 4.4–19  $\mu$ g/L.

Because of the elevated reporting limit at the baseline event, it is not clear whether arsenic concentrations increased in response to injections in the Phase II treatability study area. Arsenic in some wells did increase, however concentrations are do not show an upward trend at the end of monitoring as seen in the Appendix H plots. This indicates arsenic will not be continually generated at the treatment zone. Increases were not observed at the two wells furthest

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



downgradient of the treatability study area, thus, adverse arsenic conditions are not being created by the EAB injections.

#### 4.11.3 VOCs

Degradation by-products (daughter products) are generated as a result of EAB as discussed in Section 4.5. Cis-DCE and vinyl chloride in particular were generated within the reactive zone, sometimes resulting in concentrations higher than their baseline and action levels. This discussion focuses on potential impact of EAB daughter products downgradient of the Phase II reactive zone. Appendix H Figures H-2-0 through H-2-13 show VOCs in terms of moles per liter and Figures H-3-0 through H-3-13 show VOCs in terms of micrograms per liter.

Wells S049A, S088A, and S025A monitor groundwater downgradient of the Phase II reactive zone. As seen in the Appendix H VOC plots, at well S049A, which is located approximately 40 feet downgradient of the reactive zone, cis-DCE and vinyl chloride peaked during the second quarter monitoring event at approximately 180 days after injections. By the fourth quarter, vinyl chloride and cis-DCE decreased to below Phase II baseline concentrations but remained above action levels. The peak in daughter products at well S049A demonstrates that reductive dechlorination was likely stimulated as a result of injections.

The other two downgradient monitoring locations are located farther away from the reactive zone and were not directly impacted by Phase II injections. At well S088A, which is approximately 120 feet downgradient, daughter products remained relatively stable until the fourth quarter monitoring event when cis-DCE, vinyl chloride and ethene increased. This may indicate that EAB daughter products migrated to a distance of 120 feet after 360 days following injections. At S025A, which is 364 feet downgradient of the reactive zone, the detection of migrating daughter products is unclear. Vinyl chloride increased 30 days after injections, then decreased to below baseline concentration approximately 180 days after injections, and vinyl chloride increased in

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_EPA\_clean.docx (5-Aug- 22)



the fourth quarter. Cis-DCE increased 180 days after injections and decreased in the fourth quarter.

In summary, an increase in daughter product concentrations at S088A during the fourth quarter monitoring event may indicate that EAB daughter products migrated to a distance of 120 feet 360 days after injections.

# 4.12 Soil Vapor Methane Monitoring

The results of the soil vapor well sampling events are presented in Table 7. Copies the analytical reports from the soil vapor sampling events are included in Appendix F.

#### 4.12.1 Evaluation Criteria

Methane results from the soil vapor wells were screened against the same criteria as was groundwater well-head methane vapor: 10% of methane's LEL, which is 5,000 ppm. If methane was detected in concentrations lower than 5,000 ppm at the soil vapor wells, it suggested that the elevated methane concentrations detected in groundwater and well-head vapor were laterally constrained to the Phase II Treatability study area and that methane was attenuating before reaching nearby receptors. However, if methane is detected in concentrations greater than 5,000 ppm at the soil vapor wells, it provided a line of evidence that elevated methane concentrations in soil vapor extended laterally beyond the Phase II Treatability Study Area. This scenario would present potential health and safety issues for the occupants of both 815 Stewart Drive and 440 Wolfe Road as well as the field staff present on-site during groundwater and soil vapor monitoring activities. As such, the table below outlines the actions established for methane screening criteria.



| Soil Vapor Well  Methane Concentration Criteria | Action                                                                                                                                                                                                       |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <10% LEL (5,000 ppm) in soil vapor wells        | <ul> <li>Continue monitoring soil gas wells near receptors at the frequency specified by the well head and groundwater methane concentration results</li> <li>Monitor soil vapor wells for oxygen</li> </ul> |
| >10% LEL (5,000 ppm) in soil gas<br>wells       | <ul><li>Notify EPA</li><li>Venting and/or mitigation</li><li>Monitor soil vapor wells for oxygen</li></ul>                                                                                                   |

## 4.12.2 Helium Results

To evaluate if soil vapor samples have become diluted by ambient air during the sample collection process, Locus collected samples under a helium gas shroud. In general, a detection of helium suggests that some degree of leaking occurred during sample collection. Per the 2015 DTSC and RWQCB guidance, an ambient air leak of 5% is acceptable for the purposes of data evaluation in active soil gas investigations. The leakage ratio is obtained using the following expression:

Helium was detected in three regular field samples and one field blank sample. The leakage ratio was under 5% for the field samples, indicating they are within quality control limits and the data can still be used reliably for decision-making purposes. The detection of helium in the field blank most likely suggests a leak in the connection between the summa canister collecting the blank sample and the 1-liter Tedlar bag of nitrogen blank gas. Since this issue is constrained to a particular fastener in the blank sample train, this helium detection does not impact the data quality from this 8 June 2021 sampling event.

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



#### 4.12.3 Methane Results

Methane was not detected at any of the vapor well locations, except on one occasion at a concentration of 8900 ppm in SGI003A, on 17 July 2021. This anomalous result at SGI003A, however, is likely explained by the high methane recovery that the laboratory observed for the entire analytical batch. Furthermore, methane was not detected by the field instrument immediately following sample collection at SGI003A during this event, nor was it detected in the adjacent deeper implant, SGI003B, at the lab or in the field. Locus resampled both SGI003A and SGI003B on 6 August 2021 for confirmation and methane was not detected in either well.

## 4.12.4 Soil Vapor Monitoring Conclusions

Seven complete monthly soil vapor sampling events were conducted from February to July 2021 and one confirmation sampling event in August 2021. Over this period, methane was not detected in the soil vapor wells, except for one instance at SGI003A in which there was a laboratory discrepancy. Moreover, the confirmation resampling event at SGI003A and SGI003B, just over three weeks later, confirmed that methane was below detection. On this basis, the data strongly suggests that any biogenic methane generated as a result of anerobic bacteria activity during the Phase II Study was laterally constrained to the treatability study area and had attenuated before reaching nearby receptors. Thus, a hazard to workers, buildings, or its receptors was not present during the EAB Phase II performance cycle.

# 5 Additional Limited Groundwater Velocity Investigation

Over the course of the post-injection groundwater monitoring program, it was observed that concentrations of TOC, which is an indicator of SRS-SD substrate distribution, varied significantly from location to location. As discussed in Section 4.4.14.4 and seen in Figure 6, there were certain locations, such as S141A and S160A, wherein TOC was detected below the ideal concentration of 20 mg/L or greater, after a period of just one month or less following the injections. On the other hand, there were wells such as S138A, S158A, and S159A, in which TOC concentrations remained

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)

76



above 20 mg/L for the entirety of the post-injection monitoring period. The substrate distribution ultimately affected the performance of the EAB as discussed in Section 4.5.

Given this high variability in TOC distribution amongst wells that are clustered relatively close to one another, it is hypothesized that the local hydrogeologic conditions and small-scale variability within the Phase II study area may have influenced TOC retention. That is, a zone or multiple zones of preferential groundwater flow within the Phase II study area A-aquifer would provide a potential explanation as to why SRS-SD substrate was depleted at some locations, and not at others. Thus, a limited groundwater velocity investigation was developed and proposed to the EPA on 18 October 2021 via email, as a supplemental effort to the approved Work Plan for the Phase II study. The scope included monitoring of several Phase II study area wells at different depths. Lithologies from boring logs were reviewed as the basis for monitoring depth and permeable layers identified.

After initial rescheduling due to equipment availability, the investigation was conducted from 10 to 14 January 2022. In addition, not all wells were investigated as originally planned because of equipment limitations. Further details are discussed in the below sections.

# 5.1 Hydraulic Influences on Phase II Study Area

There are two known external factors that would likely influence any potential preferential groundwater flow in the local subsurface of the Phase II study area. First, there is an actively operating basement dewatering sump at the 440 Wolfe Road property, to the northwest. Figure 2 shows the sump, 440S, in relation to the Phase II study as well as 2020 groundwater contours. This sump continuously operates with a flow rate of approximately 50 gpm and has a significant influence on groundwater elevations in the area, as shown by the contours in Figure 2. The direction of groundwater is northwest towards the sump in much of the study area.

In addition to the 440 Wolfe sump, two trenches exist within the Phase II study area that partially coincide with the injection depths, which range from 15 to 36 ft-bgs. One trench is a former

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



utility trench that runs northwest-southeast on the eastern side of the Phase II study area as seen in Figure 5, installed at an estimated depth of 7 to 9 ft-bgs. Per the original drawings, this trench was backfilled with aggregate base Class II backfill, which is predominantly gravel grains up to 0.75 inches in diameter (Emcon, 1984). The other trench is the former 811 Arques extraction trench, which runs east-west through the northern portion of the Phase II study area. This former extraction trench was installed to a maximum depth of 24 ft-bgs and extends 80 feet in length. This trench was backfilled with 10 inches of 0.75-inch diameter pea gravel (Emcon, 1984).

# 5.2 Investigation Methods

These high permeability lithologies within the Phase II study area combined with the hydraulic influence of the 440 sump present conditions that could contribute to possible preferential groundwater flow away from the Phase II study area. Between 10 to 14 January 2022, a limited investigation was implemented utilizing a Geotech Colloidal Borescope instrument to characterize groundwater flow velocity and direction at wells within and adjacent to the Phase II study area. The Colloidal Borescope is a down-well instrument that uses magnified imagery and a compass sensor to track moving particles suspended in the water column and determine horizontal velocity and trajectory of flow in real-time (Geotech, 2021). The Colloidal Borescope's specifications state it can observe flow at a pore scale and measures velocities ranging from 0 to 30 mm/sec (30,000  $\mu$ m/sec or ~8500 feet/day), although Geotech indicated that velocities greater than ~200  $\mu$ m/sec are ideal for obtaining useful data within a reasonable time frame. Real-time measurements are seen and recorded in Geotech's AquaLITE program.

At each well, different depths within the screen interval were monitored to test for consistent flow patterns. Generally, a consistent flow pattern is identified when particles are flowing with a stable average velocity and direction over the course of 10 to 15 minutes. This period gives the suspended particles in the well time to settle after lowering the instrument down and flow patterns, if present, to emerge. A low permeable skin surrounding the well screen will result in

\\mvfile.embla.com\Projects\Projects\P\fhilips\Anques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Aug-22)

78



groundwater flowing around the well and swirling flow within the well. Swirling can be identified by the flow of particles abruptly changing in velocity and direction for an extended period. In this way, the real-time readings inform the depths at which reliable data could be collected in each well. Although the well construction logs were used to identify high permeability lithologies within each screen interval, multiple depths were monitored at well to identify potential high permeability lenses within the beds of predominantly clay and silt.

To ensure proper particle tracking, instrument parameters required adjustment from location to location, and sometimes from depth to depth. These parameter adjustments were generally contingent on the turbidity of groundwater. Specifically, the following parameters required adjustment: particle size, particle sensitivity, capture rate, maximum particle speed, and minimum number of particle matches for vector determination. Once the tracking screen in AquaLITE visually mirrored that of the actual camera feed, it could be determined that particles were being accurately tracked.

If a consistent flow pattern was observed at a well at a particular monitoring depth for 10 to 15 minutes, a new AquaLITE file was created, and data was collected at that depth for roughly one hour. The table below details the dates on which each well was monitored.

| Date      | Velocity Monitoring Locations     |
|-----------|-----------------------------------|
| 1/10/2022 | S142A, S143A, S159A, S160A        |
| 1/11/2022 | S134B1, S140A, S160A              |
| 1/12/2022 | S138A, S139A, S141A, S142A, S158A |
| 1/13/2022 | S049A, S137A, S146A, S158A, S159A |
| 1/14/2022 | S138A, S141A                      |

# 5.3 Groundwater Velocity Investigation Results

Groundwater velocity at most locations and at most depths could not be measured as originally planned within the timeframe of the investigation. As mentioned earlier, the ideal borescope velocity for stabilization within an hour time frame is approximately 200  $\mu$ m/sec. However, the

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



most recent estimate of groundwater seepage velocity within the Phase II study area, used for the design of substrate volumes, was 0.03 ft/day (0.106 µm/sec). (Locus Technologies, 2020). For the borescope to accurately measure particle velocities of 0.03 ft/day, a monitoring period of hours and possibly even days would be required. Thus, the borescope was used to identify and record consistent flow patterns at discrete depths in each well that deviated from the expected low flow conditions. The depths at which consistently higher groundwater velocities were detected were then examined as potential preferential groundwater flow zones.

Monitoring data was collected after consistent flow patterns were observed at the three following wells: S138A, S141A, and S158A. At S138A, data was collected at 14 ft-bgs and 20 ft-bgs. At S141A, 16.8 ft-bgs and 22 ft-bgs At S158A, data was collected at 16 ft-bgs. Copies of the monitoring summaries from each location and depth are presented in Appendix I.

## 5.3.1 Data Usage and Interpretation

The Colloidal Borescope utilizes vector-based analysis to determine the true direction and velocity of particle flow. The vector-based values are slightly different than an overall average of all each measured quantity. This is because taking the average of vector data requires consideration of both the direction and the magnitude of velocity. For instance, if a particle is moving due north at 200 µm/s and a second particle is moving due south at 100 µm/s, a simple average of the velocities and directions would yield a velocity of 150 µm/s in the due east direction. However, a vector-valued average result also includes the influence of the magnitude of velocity and, in this case, would yield a flow rate of 100 µm/s in a due north direction. In nearly all cases, the vector-based determination of net flow is the most accurate way to determine velocity and direction over a monitoring (Geotech, 2021). As such, groundwater flow will be reported and discussed based on averages derived from vector analysis.

\\mvfile.enthio.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5~Aug- 22)



#### 5.3.2 S138A Results

The average measured groundwater velocity in S138A at 14 ft-bgs was 179.59  $\mu$ m/s, or 50.91 ft/day, with an average flow direction of 61.66° (northeast). The values for this depth were calculated based on 3650 observations collected over a 64-minute monitoring period on 14 January 2022. At 20 ft-bgs, the average velocity was 198.35  $\mu$ m/s, or 56.23 ft/day, in the average direction of 70.73° (east northeast). Over a 62-minute monitoring period on 14 January 2022, 3579 observations were collected for this 20 ft-bgs monitoring depth. The soil at 14 ft-bgs was logged as clayey sand (SC), comprised of 50% fine to coarse sand and 10% gravel. At 20 ft-bgs, the soil type was sandy clay (CL), with 35% fine to coarse sand, 5% gravel, and extensive rootlet networks.

At both depths, the velocity of suspended particles remained stable for the entire monitoring period. This suggests that the initial disturbance caused by placing the borescope at the monitoring depths had subsided and the flow of particles was not due to external disturbances. There was, however, some variability in flow direction during the monitoring periods for both depths. In both cases, flow direction oscillated from roughly 30° to 90° on 10-minute intervals, see Appendix I. Given this oscillation, there is a lower degree of certainty that the velocity and flow direction is reliable.

#### 5.3.3 S141A Results

The average measured groundwater velocity in S141A at 16.8 ft-bgs was 159.18  $\mu$ m/s, or 45.12 ft/day, with an average flow direction of 340.69° (north northwest). The values for this depth were calculated based on 392 observations collected over a 56-minute monitoring period on 12 January 2022. At 22 ft-bgs, the average flowrate was 238.91  $\mu$ m/s, or 67.72 ft/day, in the average direction of 340.29° (north northwest). Over a 11-minute monitoring period on 14 January 2022, 299 observations were collected for this 22 ft-bgs monitoring depth. This monitoring period was limited by time constraints on the final monitoring day. The soil at 16.8

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



ft-bgs was logged as sand to silty sand (SP-SM), comprised of 80% fine to coarse sand and 10% gravel. At the 22 ft-bgs depth, the borescope was set at the approximate contact between a clay (CL) lithology with just 5% fine to coarse sand and a sandy clay (CL) bed containing 40% fine to coarse sand and trace gravel.

As compared to the monitoring conditions at both S138A and S158A, groundwater in S141A was significantly less turbid. This is reflected in the lower particle counts and is supported by turbidity measurements taken at S141A during the Quarter 4 sampling event, in which turbidity never exceeded 0.9 NTU. At both monitoring depths, the flow direction of suspended particles remained stable in the northwest direction for the entire monitoring period. This suggests that the measured flow of particles was not due to external disturbances. At the 16.8 ft-bgs monitoring depth, velocity measurements were relatively stable around the mean. At the 22 ft-bgs monitoring depth there was, however, a 1-minute spike in flow velocity that corresponds with a change in flow direction from northwest to southeast. This anomaly likely biases high the flow velocity. Immediately after the disturbance, the velocity and flow direction stabilized to the flow pattern of northwest flow velocity of roughly 200  $\mu$ m/s that was observed prior to initiating the monitoring period at 22 ft-bgs. A longer monitoring period at this depth would have likely sustained this trend.

#### 5.3.4 S158A Results

The average measured groundwater velocity in S158A at 16 ft-bgs was 37.90  $\mu$ m/s, or 10.74 ft/day, with an average flow direction of 147.01° (south southeast). These results are based on 3698 observations collected over a 77-minute period on 13 January 2022. The soil at 16 ft-bgs was logged as sand to poorly graded sand with silt (SP-SM). Approximately 10 minutes after beginning the monitoring period, the measured velocity and direction of flow started exhibit random behavior. These random shifts in direction and magnitude of velocity lasted for the duration of the monitoring period, indicating the borescope was likely measuring swirling flow

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



within the well caused by impermeable lithologies at the probe depth. Thus, this data cannot be treated as reliable.

## 5.3.5 Discussion of Velocity Results

The average flow direction and velocity of groundwater in S138A at both monitoring depths was very consistent: 50.91 ft/day towards 61.66° (northeast) at 14 ft-bgs and 56.23 ft/day towards 70.73° (east northeast) at 20 ft-bgs. This strong observed trend towards the northeast at both depths exaggerates the slight eastward deviation from due north in regional groundwater flow represented in Figure 2 of the 2020 Groundwater Monitoring Report (Locus Technologies, 2021). Per the report, the A-aquifer regional groundwater flow bearing trends at around 15° degrees (north northeast) near the Phase II study area (excluding the impact of the 440 sump). While the direction of flow at S138A is not completely consistent with regional groundwater flow, it is possible that within certain high permeability lithologies in the Phase II study area, groundwater flow trends slightly more eastward than previously estimated. More highly resolved groundwater elevation data within the Phase II study area would potentially augment this finding. For purposes of this study, the groundwater flow results are determined to be uncertain and thus neither the groundwater flow nor velocity should be used to form conclusions.

158A flow monitoring exhibited random shifts in direction and magnitude of velocity that lasted for the duration of the monitoring period, indicating the borescope was likely measuring swirling flow within the well caused by impermeable lithologies at the probe depth. Thus, this data cannot be treated as reliable, and it should not be used to form conclusions.

In S141A, the average flow direction at both monitoring depths was remarkably similar, although flow velocities were slightly different: 45.12 ft/day towards 340.69° (north northwest) at 16.8 ft-bgs and 67.72 ft/day towards 340.29° (north northwest) at 22 ft-bgs. Both monitoring depths are generally consistent with the 2020 Groundwater Monitoring Report groundwater flow direction and are within the injection depth range of 15 to 36 ft-bgs. Similarly, both 16.8 and 22

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



ft-bgs could be depths consistent with the nearby former 811 extraction trench depth. The true depth of the trench's pea gravel backfill remains uncertain as the ground surface has changed since the trench was originally installed, but the depth to bottom measured in the field at the former sump access point was 20.40 ft-bgs. This depth could potentially coincide with one or both monitoring depths at \$141A, providing a high permeability zone for groundwater to preferentially flow away from Phase II study area.

Based on the wells measured in this investigation, S141A was the sole well with reliable data, with a velocity that ranged from 45.12 to 67.72 ft/day and a direction of around 340° (north northwest). These velocities constitute a marked difference from the estimated Phase II study area seepage velocity of 0.03 ft/day calculated in the Work Plan (Locus, 2020). At each monitoring depth, the lithology corresponded well with the measured flow. That is, the proportion of coarsegrained sediments in the soil type would be sufficient for allowing enhanced groundwater flow at each monitoring depth. As such, the presence of these detected zones of higher groundwater flow provides a line of evidence to suggest that there is heterogeneous velocity and direction of groundwater flow within the Phase II study area.

As another measure of groundwater velocity in the vicinity of the Phase II study area, the presence of substrate material was observed in sediment filters handling water from the 440 Wolfe basement sump. The material was detected within eight days after the first injection activities on 10 November 2020, when it reached sufficient concentration to clog the filters. Based on this observation, the substrate likely initially reached the sump within less than eight days. Based on the distance and direction from the injection area to this sump (approximately 290 feet, 315° northwest), the calculated average groundwater velocity to reach the sump in eight days is 36 ft/day. If the substrate arrived within six days of injection, the calculated velocity would be 48 ft/day. This calculated value is reasonably consistent with range directly measured in \$141A (45–

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



68 ft/day), suggesting that these velocities are representative, at least for the area northwest of the Phase II study area.

In summary, the presence of multiple elevated groundwater velocity flow zones in the direction of the 440 Wolfe Sump at S141A likely account for the rapid loss of TOC observed during the post-injection monitoring period. It also provides insights as why the same poor TOC retention may have occurred at other wells within the Phase II study area. Additionally, the unexpected direction of flow at multiple depths in S138A, underscores the need for better understanding of the hydrogeologic conditions underlying the Phase II study area.

# 6 Summary of Results

Phase II of the Signetics EAB treatability study was conducted from September 2020 to November 2021. Radius of influence, delivery techniques, TOC retention time, COCs, and multiple other performance indicator parameters were monitored as part of the effort as discussed in detail in Section 4. This section summarizes the EAB performance by reviewing monitoring results in each well for a selected number of parameters as seen in Table 11. Wells are discussed by baseline TCE concentrations groups: low, mid-range, and high-TCE wells (refer to Section 4.2.1).

#### 6.1 Low-TCE Wells

S159A well monitoring results indicated successful EAB performance overall. All key VOCs were reduced to below action levels. This is attributed to a TOC retention time of four quarters which enabled reducing conditions and dissolved gas production. While DHC populations dropped just below the performance criteria in the third quarter, the population was sufficient enough to continue reductive dechlorination. This well was located 10 ft cross gradient of INJ-4. The injection was delivered via the TDIP tool using an injection solution with the standard ratio (84 gallons SRS-SD, 3.5 liters TSI-DC, 78 pounds sodium bicarbonate, and 4599 gallons of conditioned water) at a pressure of 170 PSI.

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auc--22)



Well S137A monitoring results indicate successful TCE reduction to acceptable levels. Cis–DCE and vinyl chloride decreased as well, however rebounded in the second and fourth quarter, respectively. Well S139A initially had TCE, cis–DCE, and vinyl chloride reductions, however they all rebounded 60 days post–injection. The TOC retention time in both these wells was only 90 days, and sulfate reducing conditions rebounded in the quarters soon afterwards. During injections, the maximum TOC concentration in S137A, however was 520 mg/L when compared to 190 mg/L in S139A although the injection solution was the same. This greater TOC concentration contributed to a better reduction in TCE in S137A. Despite this small success, cis–DCE and vinyl chloride rebounded in both wells indicating not enough substrate was available to sustain anaerobic treatment. Additional substrate is likely needed in the area of these wells to continue degradation and complete the degradation pathway.

Freon 113 was reduced or did not change in these low-TCE wells; however baseline concentrations were below levels of concern.

# 6.2 Mid-range TCE Wells

Well S143A, located on the west side of the Phase II reactive zone near INJ- 10, had significant TCE and cis-DCE decreases, however rebound occurred in the second quarter. Vinyl chloride also rebounded above the baseline in the same quarter. Biotic degradation was apparent by the increased ethene and methane production, as well as a DHC population at target level. Despite these indicators, the TOC retention time in this well was two quarters, and sulfate reducing conditions rebounded in the same quarter. This indicates that not enough substrate was available to sustain anaerobic treatment. During injections, the water level increased by 1.25 ft, lower than other wells with similar distances from the injection point, indicating less impact from the injection. Additional substrate is likely needed in the area of this well to continue degradation and complete the degradation pathway.

\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation, phaseii\12\_revised\_EAB\_Eval\_report\Performance, Report\_revised\_EPA\_clean.docx (5-Aug- 22)



Well S141A and S160A, located on the northwest side of the reactive zone, had limited VOC reductions and resulted in a slight increase to cis-DCE and vinyl chloride levels in S141A. The TOC retention time in both these wells was less than 7 days and sulfate reducing conditions did not decrease to the desired 20 mg/L level. This indicates not enough substrate was available to sustain anaerobic treatment. The additional groundwater velocity investigation pointed to a higher than expected velocity in well S141A, over 45 ft/day compared with the 0.03 ft/day estimated during the substrate design (Locus Technologies, 2021). Based on additional lines of evidence, including nearby trenches that may serve as potential preferential pathways and the date when sediment filters from the 440 Wolfe basement sump were impacted with substrate, it is likely that the operation of the sump impacted the distribution of the injection solution at this location and other wells nearby (i.e. S139A and S160A). Thus, the design as proposed should be modified to account for potential hydraulic influences. A permeable reactive barrier or a recirculating system may be more appropriate if the 440 Wolfe sump continues to operate. Hydrogeological properties may also need to be further investigated as a basis of design.

Freon 113 was reduced or did not change in the mid-range TCE wells; however baseline concentrations were below levels of concern.

# 6.3 High TCE Wells

S138A is located near the center of the Phase II reactive zone and was also included in the Phase I reactive zone. TCE was reduced by 99.9%, from 6,800 to 10  $\mu$ g/L. Cis-DCE was also initially reduced from 25,000 to 1,900  $\mu$ g/L however rebounded in the second quarter. Vinyl chloride steadily increased from Phase II baseline through the second quarter, decreased in the third quarter and rebounded to 2,000  $\mu$ g/L at the conclusion of Phase II monitoring. Compared to baseline conditions measured in Phase I, vinyl chloride increased over 2,00% over the course of Phase II. Freon 113 is present in relatively high concentrations in this well and also rebounded after some reduction. While rebounding occurred, trends still indicate reductive dechlorination is

\\mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx\_(5-Auo--22)



occurring at this well. The TOC retention time at \$138A was four quarters, indicating substrate is still available to sustain anaerobic treatment. Additional SRS–SD was applied in the injection solution (140 pounds instead of 84), indicating the increase in SRS–SD sustained adequate TOC levels when compared to other monitoring locations with high levels of TOC. However, according to the SRS–SD vendor, Terra Systems, 1–3 years of TOC retention time is common at their sites, therefore additional substrate may be needed to address higher levels of COCs. Further monitoring is recommended to see if the remaining substrate may continue to aid in degradation. Otherwise, rebound may be due to a factor other than the lack of substrate. It should be noted that an oscillation in water levels was observed in the first two hours of injection. This oscillation was unique to \$138A and could be indicative of a compromised well screen or casing. Further investigation of the well condition is recommended.

S140A exhibited the highest baseline concentrations of TCE, cis-DCE, and vinyl chloride within the Phase II treatability study area. Well S140A was also within the Phase I reactive zone. TCE reductions after the injection of INJ-8 were strong and concentrations decreased from 15,000 to <200 µg/L. The reporting limit for TCE was elevated because cis-DCE concentrations were high enough to cause interference. Samples were subsequently diluted by the laboratory, elevating the reporting limit of VOCs above levels needed to adequately assess performance. Cis-DCE concentrations have increased relatively since the first injections conducted in Phase I, and furthermore rebounded past Phase II baseline concentrations. Vinyl chloride has also increased throughout both phases of the EAB pilot studies. Freon 113 concentrations did not change substantially in this well during Phase II and are below action levels. The TOC retention time was 60 days and sulfate reducing conditions did not decrease to the desired 20 mg/L level. There is also an indication that iron reducing conditions were not reached, which is a precursor to other electron acceptors such as sulfate. This indicates not enough substrate was available to initiate reducing conditions that sustain anaerobic treatment, causing incomplete degradation pathways. S140A is located near S141A, which is suspected to be impacted by the 440 Wolfe sump and

\\mvfile.embla.com\Projects\Projects\P\Philips\Angues\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5~Aug~22)



nearby trenches. It is possible that this nearby well is also subject to influence by hydraulic conditions and should be considered for design modifications. It should also be noted that the PAIP tool was used to deliver the injection solution at INJ-8 which cause the sustained pressure to dip slightly to 150 PSI.

VOC concentrations in S146A rebounded or ultimately increased to above baseline levels. Sulfate reducing conditions were achieved but also rebounded. Methane production above the target was short-lived at 30 days. Ethene decreased at this well, and the rebounding and lack of methane and ethene generation indicates reductive dechlorination was limited. Freon 113 was initially reduced but rebounded in the third and fourth quarters to reach 6,100 µg/L. Freon 113 inhibits reductive dechlorination by DHC (specifically *Dehalococcoides mccartyi*) in a concentration-dependent manner, causing cis-DCE stalls (Im J, 2019). In addition, the TOC retention time at this well was two quarters, another line of evidence hindering anaerobic treatment. The injection delivery tool used at nearby INJ-3 was the PAIP instead of the TDIP used at other injection locations. Using this tool, sustained pressures and flowrates for INJ-3 were limited at 70-100 PSI and 3.8 - 20.2 gpm with periodic tool clogging. Additional substrate will be needed in the area of this well to continue degradation, and it is recommended that the TDIP be used instead of the PAIP to ensure adequate injectate distribution. Addressing Freon 113 concentrations is also recommended.

S158A is a newly installed well located on the south end of the Phase II treatability study area. It was originally planned as an upgradient well, however the baseline TCE concentration of 8,100  $\mu$ g/L extended the known horizontal extent of the plume southward (note that the concentration was qualified by the lab for exceeding the calibration range). After injections at nearby INJ-9, TCE was reduced by 99.9% to <10  $\mu$ g/L. Cis-DCE peaked after injections, stabilizing at 22,000  $\mu$ g/L for 90 days before decreasing to 44  $\mu$ g/L in the third quarter and finally rebounding in the fourth quarter. Vinyl chloride followed a similar trend of decreasing in the third quarter and rebounding

\\mvfile.enthia.com:Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell:12\_revised\_EAB\_Eval\_report\Performance,Report\_revised\_
EPA\_clean.docx (5-Auc-22)



in the fourth quarter. The TOC retention time in this well is four quarters and contained 210 mg/L TOC at the time of the final sampling event, substantially above the recommended amount. Sulfate reducing conditions persisted through the performance monitoring period. The DHC microbial population was high, and gases were generated from fermentation and microbial activity as expected. Thus all signs point to an environment that sustains dechlorination, however monitoring VOC data does not indicate a degradation pathway is complete. Freon 113 was reduced to  $79 \,\mu\text{g/L}$  from a baseline of 1,500  $\,\mu\text{g/L}$  then rebounded in the fourth quarter. Because TOC concentrations are substantial, further monitoring is recommended in this well to understand whether rebounds persist.

# 7 Conclusions

Performance parameters monitored throughout the study were evaluated against the Test Goals identified in Section 4.1 of the Work Plan. Work Plan Test Goals are identified in italics below. Findings are described following each Test Goal.

♦ Improve the monitoring network by adding three additional monitoring wells in the treatability study area for baseline and progress monitoring; one additional well at the upgradient end of the treatability study area, and two additional wells at the downgradient end of the treatability study area.

As seen in Figures 2 and 5, well S158A was installed in the upgradient zone of the treatability study area, within the ROI of INJ-9. Wells S159A and S160A were installed in the downgradient zone of the treatability area in the ROI of INJ-7 and INJ-4, respectively. Details of the monitoring well installation was discussed in the Injection Completion Report (Locus Technologies, 2021). In addition, three ad-hoc grab groundwater samples were collected immediately following injection (TW-1, TW-2, TW-3) and analyzed for VOCs to characterize the horizontal extent of the source area further. These wells were included in the baseline and post-injection (progress) monitoring as discussed in Section

\\mvfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_
EPA\_clean.docx\_(5-Auc--22)



- 4.2. Results from these new Phase II wells and the expanded monitoring network are included in Section 4.
- ♦ Collect injection pressure data at varying flow rates to refine injection procedures for future full-scale implementation.

The collection of pressure and flowrate data provided useful information on effectiveness of direct push injection tooling, sustainable delivery rates, and site-specific fluid acceptance capacity. Overall, the TDIP tooling provided flexibility in the field for delivering the reagent at various pressures and flow rates. General injection flowrates of up to 26 gpm were achieved at sustained pressures of 170 PSI across the injection column. Similar rates were observed for the delivery of loading volumes of up to 50% above design value. No daylighting or indication of fracturing was observed with the implemented injection techniques.

- ♦ Gauge water levels surrounding injection points to measure the radius of influence (ROI) of the injection.
  - Water levels were measured continuously as injections were conducted in the treatability area. These water levels were then graphed to visualize the impact of injection and determine the actual ROI, as discussed in Section 4.2.2. An ROI of 20 feet or greater was measured for ten out of twelve injections. The average ROI was estimated at 33 feet, based on qualifiable data (see Section 4.2.3). However, due to the extended injection activity period, in relation to Phase I study, a ROI greater than 20 feet may have been influenced by hydraulic disturbances resulting from the lateral displacement of resident groundwater. Therefore, a ROI of 20–30 feet should be retained for future implementations.
- ♦ Increase carbon availability across the study area to decrease electron acceptor profile, mitigate VOC rebounds, and support the repopulation of inoculated microbial cultures.



Carbon availability varied across the reactive zone, shown by the TOC retention times in Figure 6. Wells S159A, S158A and S138A, which experienced the longest TOC retention times, may benefit from additional performance monitoring to evaluate the degree to which VOC rebounding will occur and the longevity of the repopulated DHC. In other areas of the reactive zone, additional carbon may be necessary to avoid rebounds, competition from other electron acceptors, and promote microbial growth.

The injection of SRS-SD resulted in a TOC increase from 1.8 mg/L to an average of 120 mg/L by end of second week of injections. Average concentration gradually decreased following this period and up to 77% by second quarter (28 mg/L). Overall, TOC retention rates suggest an increase in injection frequency or dosing concentration may be required to maintain target TOC across the reactive zone. However, the poor retention identified at specific locations may attributed to the effects of existing preferential pathways and high utilization rate for biotic degradation.

♦ Increase Dehalococcoides (DHC) populations where populations have declined below the target of 1 x 10<sup>6</sup> cells/L (1 x 10<sup>3</sup> cells/mL) based on third quarter monitoring: S146A and S140A.

Phase II injections successfully repopulated DHC at wells S146A and S140A, which remained above the screening criterion through the entirety of the Phase II monitoring period. The Phase II evaluation used a more conservative screening threshold (>1x10<sup>4</sup> cells/mL DHC), recommended by Microbial Insights and recent studies. DHC populations surpassed 1x10<sup>4</sup> cells/mL in the reactive zone (confirmed during the Phase II 90-day monitoring event), except for well S160A which narrowly met the DHC target. By the third quarter, wells S159A and S160A decreased to below the screening criterion, with fourth quarter DHC populations of 2x10<sup>3</sup> cells/mL and 4.7x10<sup>3</sup> cells/mL, respectively. This population decline appeared to have minimal effect on the performance at S159A based



on the VOC concentrations; however, low DHC populations compounded with low TOC at S160A indicates insufficient injection solution was present in this well.

♦ Implement a gridded injection, expanding reactive zone to reduce the effects of boundary conditions (the effects of untreated areas on treated areas) and migration of VOCs to downgradient areas.

Twelve injections were planned in a triangular grid with 20 ft ROIs. The planned triangular grid is seen in Figure 4 of the Work Plan (Locus Technologies, 2020). After field verifications and discussions with the EPA, three planned injections (INJ–10, INJ–9, and INJ–6) were moved due to field constraints (see more details in the Injection Completion Report) which resulted in a deviation from the originally planned triangle grid. Figure 5 shows the final locations of the injections with the estimated ROI of 20 ft. Injections circles are adjacent to each other in most areas, however when the average actual ROI of 33 feet is incorporated, the injections overlap. The overlapping of injections helps reduce the effects of boundary conditions. Monitoring locations inside the reactive zone were sampled throughout the duration of Phase II study to further evaluate the boundary conditions. Downgradient wells S025A and S088A were monitored for adverse groundwater impacts and migration of VOCs. No adverse groundwater impacts were detected at downgradient wells as discussed in Section 4.11.

Implement a gridded injection based on a 20-foot ROI, verified with field observations such as water levels or appearance.

As previously discussed, twelve injections were planned in a triangular grid with 20 ft ROIs; however, field constraints caused some of the locations to move resulting in three injections to the east, west, and south to deviate from the 20-foot ROI grid. The actual ROIs were greater and the average ROI was 33 feet as verified with water levels and discussed in Section 4.2.3.



- Determine the effectiveness of SRS-SD and TSI-DC bioaugmentation culture at promoting anaerobic degradation of chlorinated ethenes and Freon 113 at S140A and S141A.
  The injection solution of SRS-SD and TSI-DC clearly promoted anaerobic degradation of chlorinated ethenes in the high-TCE and low-TCE wells, demonstrated by fluctuating VOC concentrations and the sharp decline of TCE in the reactive zone. At the mid-range TCE wells in the northwest of the reactive zone, particularly S141A and S160A, the TOC retention time was very short (approximately 1 week), and reductive dechlorination of VOCs was less apparent. Overall, Freon 113 decreased at the majority of wells in the reactive zone, and Freon 113 concentrations were below the action level of 1,200 μg/L at all wells in the fourth quarter, except for S146A.
- ♦ Refine in situ remedial parameters for full-scale implementation.
  - TOC retention times and EAB performance were affected by the hydraulic gradient and the existence of high permeability zones within the Phase II treatability study area. Thus, in situ parameters could not be fully refined and a modification of the design is recommended to accommodate these hydraulic influences. However, assuming direct push injections are used again, ROI and delivery techniques evaluations resulted in a recommendation of the TDIP tool over the PAIP. Phase II sustained pressures of 170 PSI did not cause daylighting whereas pressures below that did not result in adequate substrate distribution. Daylighting occurred above this pressure in Phase I, thus it recommended to continuing applying a pressure of around 170 PSI in the future. Using the Phase II pressure, an average ROI of 33 feet was observed, however the use of a 20-foot ROI is recommended due to potential displacements (see Section 4.2.3).
- Demonstrate that injection of this substrate would not create unintended adverse impacts to groundwater.
  - Manganese and arsenic increased in the reactive zone as a result of the reducing conditions caused by the EAB injections. Monitoring of downgradient wells however,

<sup>\\</sup>mwfile.emhia.com\Projects\Projects\P\finlips\Arques\ASAOC\_defiverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Aug- 22)



showed that elevated manganese and arsenic were not found outside the reactive zone throughout the performance monitoring period. Therefore, unintended adverse impacts to groundwater were not encountered. Further details can be found in Section 4.11.

# 8 Recommendations

The study findings have indicated that a single injection of SRS-SD and TSI-DC was effective in promoting anaerobic biodegradation of VOCs at limited locations. However, the majority of the treatment area did not complete the degradation pathway due to limited TOC (carbon availability). Thus, source area treatment should continue, and the following recommendations should be implemented in the future remedy design:

- ♦ Conduct an additional pilot, Phase III, in the treatability study area for continued source treatment, and expand the treatment area to areas where VOCs persist. Because post-injection monitoring of Phase II is still ongoing, it is recommended to develop the work plan after the two-year monitoring event (scheduled for Q4 2022) and to consider the data from that event in the design of Phase III.
- During Phase II grab sampling, the lateral extent of the plume was discovered to reach further south. The monitoring network should be expanded to include more wells on the south side of the reactive zone and potentially more injections if baseline sampling of the new wells provides new information on the distribution of concentrations.
- ♦ Increase carbon availability across study area to decrease electron acceptor profile, mitigate VOC rebounds, and support the repopulation of inoculated microbial cultures. Based solely on TOC data, the results suggest an increase in injection frequency or dosing concentration may be required for a 12 month design cycle. The SRS-SD vendor Terra Systems has recommended a 12 month to 3 year design cycle.

95



- Observed delivery rates and TDIP tooling are recommended for future implementations, if other delivery parameters (i.e. injection depth, volumes, amendment material, etc.) remain the same.
- ♦ For further expansions of the EAB treatment area, implement a gridded injection based on a 20 to 30-foot radius of influence. Ensure the injections can be monitored adequately from all available monitoring wells or adding new wells if necessary.
- Conduct additional EAB performance groundwater monitoring at \$138A and \$158A to assess additional degradation by remaining TOC.
- ♦ The functional genes VCR and BVC do not appear to accurately reflect the site conditions and are not recommended to be used in the future as indicator parameters.
- Attempt to reduce elevated reported limits to enable comparison with performance indicators.
- Evaluate the physical well condition at S138A due to observed oscillations during injection water level gauging.
- ♦ Address Freon 113 concentrations at \$146A that may be contributing to rebounding.
- ♦ Further refine in situ remedial parameters for full-scale implementation.
- ♦ Refine ROI of reagents by conducting tracer studies or similar studies.
- ♦ Based on the velocity investigation, modify the design to account for hydraulic conditions caused by extraction wells, sump, and potential preferential pathways in the treatability area. Modifications may include targeting zones within the A-aquifer by adjusting delivery techniques or the incorporation of recirculation techniques. A less viscous substrate may be needed for recirculation design which would require more treatment studies. Modifications could also include the incorporation of secondary treatment technologies such reactive barriers or phytotechnologies. Phytotechnologies have been demonstrated to perform successfully at a nearby site with similar characteristics. The degradation

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_defiverables\Bioremediation, phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



- mechanism (aerobic vs anaerobic) would need to be considered when considering its feasibility. A site visit is planned for assessing the feasibility further.
- Site-specific hydrogeologic conditions may also need further investigation if needed for the basis of design and targeted treatment. Injection back pressures could be evaluated to gauge groundwater transmissivity and areas of resistance. It is more desirable to target injections in clay lenses, reflected by higher back pressures rather than lower pressure depths that indicate higher groundwater transmissivity or potential for substrate loss. In addition, a membrane interface probe could be incorporated in the next design to characterize the extent of the VOC and identify migration pathways.
- Consider expanding treatment to the area north of the current treatability area, at 815 Stewart Drive. A separate work plan for this area should be developed with information from the Phase III pilot.



# REFERENCES

- Air Force. (2007). Final Protocol for In-Situ Bioremediation of Chlorinated Solvents Usig Edible

  Oil. Center for Engineering and the Environmental. Environmental Science Division

  Technology Transfer Outreach Office.
- Beth L. Parker, S. W. (2008). Plume persistence caused by back diffusion from thin clay layers in a sand. *Journal of Contaminant Hydrology*.
- Bruce A. Manning, M. L. (2002). Arsenic(III) and Arsenic(V) Reactions with Zerovalent Iron Corrosion Products. *Environmental Science & Technology*.
- DTSC. (2015). California Department of Toxic Substances Control (DTSC), Advisory: Active Soil

  Gas Investigations, July.
- Einarson, Fowler & Watson. (1999). *Philips Semiconductors Groundwater Report, Second Half of*1998, 811 East Arques Avenue Site, Sunnyvale, California, 31 January.
- Emcon. (1984). Emcon Associates (Emcon), Signetics Corporation Well S-70A Infiltration Trench,

  Sunyvale, California: As-Built Construction Details, October.
- EPA. (1991). Environmental Protection Agency (EPA), Superfund Record of Decision: Signetics (Advanced Micro Devices 901)(TRW Microwave), First Remedial Action –Final, September, EPA/ROD/R09–91/074. Environmental Protection Agency Office of Emergency and Remedial Response.
- EPA. (1998). Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater Appendix B: Important Processes Affecting the Fate and Transport of Organic. Washington, DC: EPA Office of Research and Development.



- EPA. (2000). Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents:

  Fundamentals and Field Applications. Washington, DC: Office of Solid Waste and

  Emergency Response.
- EPA. (2021, December 27). Bioremediation Anaerobic Bioremediation (Direct). Retrieved from CLU-IN Contaminated Site Clean-up Information: https://clu-in.org/techfocus/default.focus/sec/bioremediation/cat/anaerobic\_bioremediation\_(direct)/
- Figgins, S. (2007). Competitive Inhibition of TCE Degradation by Freons Present in a Regional Plume. *Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium.* Baltimore, Maryland: Battelle Press.
- Geoprobe. (2013, 2 25). *Direct Push Tooling*. Retrieved from Geoprobe Systems: https://geoprobe.com/sites/default/files/pdfs/ps\_2013\_2.25\_in.\_injection\_probe\_0\_0.p df
- Geosyntec. (2005). Bioaugmentation for Remediation of Chlorinated Solvents: Technology

  Development, Status, and Research Needs. DOD, ESTCP.
- Geotech. (2021). Geotech Environmental Euipment (Geotech), Geotech Colloidal Borescope

  Installation and Operation Manual, 5 January.
- IDEM. (2019). Indiana Department of Environmental Management (IDEM), Technical Guidance

  Document: Addressing Methane at Anaerobic Bioremediation Sites, 31 August.
- Im J, M. E. (2019). Biotic and Abiotic Dehalogenation of 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113): Implications for Bacterial Detoxification of Chlorinated Ethenes. . *Environ Sci Technol*.
- In Situ Remediation Reagents Working Group. (2009, September 16). Technical Report:

  Subsurface Injection of In Situ Remedial Reagents (ISRRs) Within the Los Angeles Regional

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Angues\ASAOC\_defiverables\Bioremediation\_phaseII\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5~Aug~22)



- Water Quality Control Board Jurisdiction. Retrieved from https://www.waterboards.ca.gov/rwqcb4/water\_issues/programs/ust/guidelines/Subsurface\_injection\_of\_ISRR.pdf
- ITRC. (2020). Optimizing Injection Strategies and In Situ Remediation Performance.
- ITRC. (2021). Bioremediation. Retrieved from Performance Monitoring Table: clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Anaerobic\_Bioremediation\_(Direct)/
- Locus Technologies. (2016). *Treatability Study Work Plan: 811 East Arques Avenue Site,*Sunnyvale, California. Mountain View.
- Locus Technologies. (2018). *Performance Evaluation of In-Situ Enhanced Anaerobic Bioremediation Treatability Study.*
- Locus Technologies. (2020). *Phase II Enhanced Anaerobic Bioremediation (EAB) Treatability Study Work Plan, 23 June.*
- Locus Technologies. (2020). *Quality Assurance Project Plan (QAPP) for Enhanced Anaerobic Bioremediation Treatability Study Phase II, June 23.*
- Locus Technologies. (2021). Annual Groundwater Monitoring Report, January to December 2020, Signetics and Offsite Operable Unit, 30 April.
- Locus Technologies. (2021). *Injection Completion Report, Enhanced Anaerobic Bioremediation*Phase II Treatability Study, 4 January.
- Microbial Insights. (2021). DHC Interpretation Guide. DHC Interpretation. Knoxville, TN, 37932.
- NIOSH. (2007). National Institute for Occupational Safety and Health, NIOSH Pocket Guide to Chemical Hazards, September.

<sup>\\</sup>mvfile.enthin.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug- 22)



- Parsons. (2004). *Final Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents.* AFCEE, NFEC and ESTCP.
- Parsons. (2010, November). Substrate Estimating Tool for Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Environmental Security Technology Certification Program, November.
- SFRWQCB. (2016). Environmental Screening Levels. California Water Boards.
- State Water Resources Control Board. (2017). *Groundwater Information Sheet: Arsenic.* Division of Water Quality.
- YSI Incorporated. (2009). The Dissolved Oxygen Handbook. Yellow Springs, OH: YSI Incorporated.
- Z. Miao, M. L.-D. (2001). Sulfate Reduction in Groundwater: Characterization and Applications for Remediation . NIH.



# TABLES

<sup>\\</sup>mvfile.enthis.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phanell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (4-Aug-22)



# TABLE 1 COMPLETED IN-SITU INJECTION QUANTITIES AND PARAMETERS EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| Injection<br>Location | Injection<br>Date          | Injection Depth (ft-bgs) | Injection<br>Method | SRS-SD<br>(gal) | TSI-DC | Sodium<br>Bicarbonate<br>(lbs) | <b>Water</b> (gal) | Total<br>Injected<br>(gal) | Sustained<br>Pressure<br>(PSI) | Flow Rate<br>(gpm) | Daylighting<br>Monitored<br>Wells |
|-----------------------|----------------------------|--------------------------|---------------------|-----------------|--------|--------------------------------|--------------------|----------------------------|--------------------------------|--------------------|-----------------------------------|
| INJ-3                 | 11/10/2020                 | 16 - 36                  | PAIP                | 84              | 3.5    | 75                             | 4,599              | 4,688                      | 70 - 100                       | 3.8 - 20.2         | S138A, S137A,<br>S146A, S158A     |
| INJ-8                 | 11/11/2020                 | 15 - 35                  | PAIP                | 84              | 3.5    | 75                             | 4,599              | 4,688                      | 150 - 170                      | 19.5 - 22.5        | S138A, S140A,<br>S145A, S158A     |
| INJ-10                | 11/11/2020 -<br>11/12/2020 | 15 - 35                  | TDIP                | 84              | 3.5    | 75                             | 4,599              | 4,688                      | 170                            | 21.7 - 26.6        | S142A, S144A, S145A               |
| INJ-2                 | 11/12/2020                 | 15 - 35                  | TDIP                | 84              | 3.5    | 75                             | 4,599              | 4,688                      | 170                            | 21.7 - 24.4        | S136A, S137A,<br>S138A, S146A     |
| INJ-7                 | 11/12/2020 -<br>11/13/2020 | 15 - 35                  | TDIP                | 84              | 3.5    | 76.5                           | 4,599              | 4,688                      | 170                            | 15.4 - 24.4        | S138A, S140A,<br>S141A, S160A     |
| INJ-1                 | 11/13/2020                 | 15 - 35                  | TDIP                | 84              | 3.5    | 78                             | 4,599              | 4,688                      | 170                            | 21.7 - 23.4        | S136A, S137A, S159A               |
| INJ-9                 | 11/16/2020                 | 15 – 35                  | TDIP                | 84              | 3.5    | 116.3                          | 6,898              | 6,989                      | 170                            | 22.4 - 25.0        | S158A, S146A,<br>S140A, S145A     |
| INJ-5                 | 11/17/2020 -<br>11/18/2020 | 15 - 35                  | TDIP                | 140             | 3.5    | 78                             | 4,599              | 4,744                      | 170                            | 5.0 - 22.8         | S138A, S140A,<br>S146A, S158A     |
| INJ-12                | 11/17/2020                 | 15 – 35                  | TDIP                | 84              | 3.5    | 78                             | 4,599              | 4,688                      | 170                            | 4.0 - 23.4         | S143A, S145A                      |
| INJ-11                | 11/18/2020                 | 15 - 35                  | TDIP                | 84              | 3.5    | 78                             | 4,599              | 4,688                      | 170                            | 20.9 - 25.5        | S140A, S141A,<br>S143A, S145A     |
| INJ-4                 | 11/19/2020                 | 15 – 35                  | TDIP                | 84              | 3.5    | 78                             | 4,599              | 4,688                      | 170                            | 20.2 - 24.4        | S137A, S139A,<br>S159A, S160A     |
| INJ-6                 | 11/19/2020 -<br>11/20/2020 | 15 – 35                  | TDIP                | 140             | 3.5    | 78                             | 6,080              | 6,080                      | 45 – 175                       | 10.1 - 23          | S136A, S137A, S159A               |

#### NOTES:

ft-bgs = Feet below ground surface

gal = Gallon

 ${\tt gpm} = {\tt Gallons} \ {\tt per} \ {\tt minute}$ 

Ibs = Pounds

L = Liters

 $PAIP = Pressure \ activated \ injection \ probe$ 

PSI = pounds per square inch

 $SRS-SD = Slow \ Release \ Substrate \ (SRS@) - Small \ Droplet \ Emulsified \ Vegetable \ Oil \ Substrate$ 

TDIP = Top-down injection probe

TSI-DC = Terra Systems Inc. Dehalococcoides mccartyii Bioaugmentation Culture®



| WELL ID               |             | S049A      | S049A      | S049A      | S049A      | S049A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S049A      | S137A      |
|-----------------------|-------------|------------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| DATE                  |             | 11/16/2020 | 11/16/2020 | 11/18/2020 | 11/18/2020 | 11/20/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/2020 | 11/11/2020 |
| TIME                  |             | 13:02      | 13:20      | 13:30      | 13:46      | 8:46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9:05       | 13:00      |
| PARAMETER             | Result Unit | Result     | Result     | Result     | Result     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result     | Result     |
| Alkalinity            |             |            |            |            |            | NAME AND ADDRESS OF THE PARTY O |            |            |
| Appearance/odor       | mg/L        |            | Clear      |            | Clear      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear      |            |
| DO                    | mg/L        |            | 0.86       |            | 1.44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.03       |            |
| Ferrous Iron          | ft-bgs      |            | 0          |            | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          |            |
| Groundwater level     | mg/L        | 9.45       |            | 9.5        |            | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 12.03      |
| Methane               | ppm         | 0          |            | 410        |            | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |
| ORP                   | mV          |            | -77.6      |            | -41.2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8        |            |
| рН                    |             |            | 6.77       |            | 6.76       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.81       |            |
| Specific Conductivity | μS/cm       |            | 1432       |            | 1421       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1424       |            |
| Temperature           | °C          |            | 20.7       |            | 20.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.3       |            |
| Turbidity             | NTU         |            |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
| Field Notes           |             |            |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |

#### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S137A      | S137A                             | S137A                             | S137A            | S137A        | S137A      | S137A       |
|-----------------------|-------------|------------|-----------------------------------|-----------------------------------|------------------|--------------|------------|-------------|
| DATE                  |             | 11/11/2020 | 11/12/2020                        | 11/12/2020                        | 11/13/2020       | 11/13/2020   | 11/16/2020 | 11/16/2020  |
| TIME                  |             | 13:05      | 15:18                             | 15:39                             | 16:10            | 16:25        | 13:30      | 13:45       |
| PARAMETER             | Result Unit | Result     | Result                            | Result                            | Result           | Result       | Result     | Result      |
| Alkalinity            | ww. son     |            |                                   |                                   |                  |              |            |             |
| Appearance/odor       | mg/L        |            |                                   | Cloudy white                      |                  | Cloudy white |            | Milky, odor |
| DO                    | mg/L        | 1.18       |                                   | 1.23                              |                  | 0.88         |            | 0.77        |
| Ferrous Iron          | ft-bgs      | 0          |                                   | 0.5                               |                  |              |            | 1           |
| Groundwater level     | mg/L        |            | 5.9                               |                                   | 9.95             |              | 12         |             |
| Methane               | ррт         |            |                                   |                                   | 0                |              | 75         |             |
| ORP                   | mV          | 55.7       |                                   | -74.2                             |                  | -124.1       |            | -168.4      |
| рН                    |             | 7.04       |                                   | 7                                 |                  | 6.88         |            | 6.63        |
| Specific Conductivity | μS/cm       | 1362       |                                   | 1494                              |                  |              |            | 1436        |
| Temperature           | °C          | 22.5       |                                   | 22.1                              |                  | 21.8         |            | 22.6        |
| Turbidity             | NTU         |            |                                   |                                   |                  |              |            |             |
| Field Notes           |             |            | Used to monitor<br>INJ–2 on 11/12 | Used to monitor<br>INJ–2 on 11/12 | Due to injection |              |            |             |

#### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |                                         | S137A      | S137A      | S137A      | S137A      | S137A                                                          | S137A                                              | S137A                                                                                              |
|-----------------------|-----------------------------------------|------------|------------|------------|------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| DATE                  |                                         | 11/17/2020 | 11/17/2020 | 11/18/2020 | 11/18/2020 | 11/19/2020                                                     | 11/19/2020                                         | 11/20/2020                                                                                         |
| TIME                  | *************************************** | 12:45      | 13:15      | 13:50      | 14:15      | 16:58                                                          | 17:08                                              | 9:12                                                                                               |
| PARAMETER             | Result Unit                             | Result     | Result     | Result     | Result     | Result                                                         | Result                                             | Result                                                                                             |
| Alkalinity            | ***                                     |            | new new    |            | was was    |                                                                | were store                                         |                                                                                                    |
| Appearance/odor       | mg/L                                    |            | Milky      |            | Milky      |                                                                | Milky                                              |                                                                                                    |
| DO                    | mg/L                                    | ****       | 0.77       | ***        | 0.9        |                                                                | 0.8                                                |                                                                                                    |
| Ferrous Iron          | ft-bgs                                  |            | 1.5        |            | 2.5        |                                                                | 3.5                                                |                                                                                                    |
| Groundwater level     | mg/L                                    | 12.25      |            | 9.85       |            |                                                                |                                                    |                                                                                                    |
| Methane               | ррт                                     | 210        | ****       | 55         |            | 0                                                              | ****                                               |                                                                                                    |
| ORP                   | mV                                      |            | -191.6     |            | -178.2     |                                                                | -171.5                                             |                                                                                                    |
| рН                    |                                         |            | 6.54       |            | 6.3        |                                                                | 6.26                                               |                                                                                                    |
| Specific Conductivity | μS/cm                                   |            | 1334       |            | 1251       |                                                                | 1181                                               |                                                                                                    |
| Temperature           | °C                                      |            | 22.2       |            | 22.1       |                                                                | 21.8                                               |                                                                                                    |
| Turbidity             | NTU                                     | ***        |            |            |            |                                                                |                                                    |                                                                                                    |
| Field Notes           |                                         |            |            |            |            | Water level not<br>measured, active<br>monitoring<br>location. | Monitoring INJ–6<br>sampled during<br>INJ progress | Not measured,<br>soil vapor cap<br>open. Water level<br>not measured,<br>active INJ<br>monitoring. |

#### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S137A                                             | S138A          | S138A      | S138A      | S138A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S138A      | S138A              |
|-----------------------|-------------|---------------------------------------------------|----------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| DATE                  |             | 11/20/2020                                        | 11/11/2020     | 11/11/2020 | 11/12/2020 | 11/12/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/13/2020 | 11/13/2020         |
| TIME                  |             | 9:22                                              | 8:24           | 16:40      | 17:24      | 17:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14:45      | 15:00              |
| PARAMETER             | Result Unit | Result                                            | Result         | Result     | Result     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result     | Result             |
| Alkalinity            |             |                                                   |                |            |            | NAME AND ADDRESS OF THE PARTY O |            |                    |
| Appearance/odor       | mg/L        | Milky/odor                                        | clear/H2s odor |            |            | Sulfur odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Light cloudy white |
| DO                    | mg/L        | 1.01                                              | 0.71           |            |            | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.78               |
| Ferrous Iron          | ft-bgs      | 2                                                 | 1              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                  |
| Groundwater level     | mg/L        |                                                   | 12.65          | 13.09      | 10.81      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4       |                    |
| Methane               | ppm         |                                                   |                |            | 15         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120        |                    |
| ORP                   | mV          | -153.8                                            | -221.5         |            |            | -201.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -193.8             |
| рН                    |             | 6.25                                              | 6.96           |            |            | 6.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 6.92               |
| Specific Conductivity | μS/cm       | 1136                                              | 1401           |            |            | 1498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1518               |
| Temperature           | °C          | 21.8                                              | 22.1           |            |            | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 22.1               |
| Turbidity             | NTU         |                                                   |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |
| Field Notes           |             | Monitor INJ-6 -<br>sampled during<br>INJ progress |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |

#### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S138A      | S138A      | S138A                                           | S138A      | S138A      | S138A      | S138A      |
|-----------------------|-------------|------------|------------|-------------------------------------------------|------------|------------|------------|------------|
| DATE                  |             | 11/16/2020 | 11/16/2020 | 11/17/2020                                      | 11/18/2020 | 11/18/2020 | 11/19/2020 | 11/19/2020 |
| TIME                  |             | 15:50      | 16:05      | 0:00                                            | 15:56      | 16:14      | 15:58      | 16:15      |
| PARAMETER             | Result Unit | Result     | Result     | Result                                          | Result     | Result     | Result     | Result     |
| Alkalinity            |             |            |            | 6906                                            |            |            |            |            |
| Appearance/odor       | mg/L        |            | Clear/odor | Milky/odor present                              |            | Milky/odor |            | Milky      |
| DO                    | mg/L        |            | 0.7        | 0.66                                            |            | 0.7        |            | 0.7        |
| Ferrous Iron          | ft-bgs      |            | 1          | 2                                               |            | 3          |            | 3          |
| Groundwater level     | mg/L        | 12.7       |            |                                                 | 11.05      |            | 10.45      |            |
| Methane               | ppm         | 330        |            |                                                 | 240        | ***        | 360        |            |
| ORP                   | mV          |            | -223.8     | -180.5                                          |            | -184       |            | -211.2     |
| рН                    |             |            | 6.05       | 6.66                                            |            | 6.7        |            | 6.61       |
| Specific Conductivity | μS/cm       |            | 1450       | 1848                                            |            | 1680       |            | 1697       |
| Temperature           | °C          |            | 22.4       | 21.7                                            |            | 21.8       |            | 21.9       |
| Turbidity             | NTU         |            |            |                                                 |            |            |            |            |
| Field Notes           |             |            |            | Alkalinity field<br>method as<br>CaCO2; Alk P=0 |            |            |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S138A      | S138A         | S139A      | S139A      | S139A      | S139A             | S139A      |
|-----------------------|-------------|------------|---------------|------------|------------|------------|-------------------|------------|
| DATE                  |             | 11/20/2020 | 11/20/2020    | 11/11/2020 | 11/11/2020 | 11/12/2020 | 11/12/2020        | 11/13/2020 |
| TIME                  |             | 11:28      | 11:45         | 15:15      | 15:30      | 15:35      | 15:50             | 13:25      |
| PARAMETER             | Result Unit | Result     | Result        | Result     | Result     | Result     | Result            | Result     |
| Alkalinity            |             |            | nor no        |            |            | ww         |                   |            |
| Appearance/odor       | mg/L        |            | Milky/odorous |            | Milky      |            | oudy white/H2s od |            |
| DO                    | mg/L        |            | 0.71          |            | 0.84       |            | 1.13              | part part  |
| Ferrous Iron          | ft-bgs      |            | 1.5           |            | 2          |            | 2.5               |            |
| Groundwater level     | mg/L        | 12         |               | 12         |            | 10.41      |                   | 11.45      |
| Methane               | ppm         | 440        |               |            |            | 700        |                   | 0          |
| ORP                   | mV          |            | -233.5        |            | -102.7     |            | -110.5            |            |
| рН                    |             |            | 6.57          |            | 6.61       |            | 6.6               |            |
| Specific Conductivity | μS/cm       |            | 1590          |            | 1611       |            | 1706              |            |
| Temperature           | °C          |            | 21.9          |            | 22.3       |            | 22.2              |            |
| Turbidity             | NTU         |            |               |            |            |            |                   |            |
| Field Notes           |             |            |               |            |            |            |                   |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S139A        | S139A                                           | S139A                          | S139A                                                                                         | S139A                                                           | S139A      | S139A              |
|-----------------------|-------------|--------------|-------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------|--------------------|
| DATE                  |             | 11/13/2020   | 11/16/2020                                      | 11/16/2020                     | 11/16/2020                                                                                    | 11/16/2020                                                      | 11/17/2020 | 11/17/2020         |
| TIME                  |             | 13:40        | 13:13                                           | 13:45                          | 14:05                                                                                         | 14:50                                                           | 13:10      | 13:33              |
| PARAMETER             | Result Unit | Result       | Result                                          | Result                         | Result                                                                                        | Result                                                          | Result     | Result             |
| Alkalinity            |             |              | 4340                                            |                                | 7752                                                                                          |                                                                 | wax 1000   |                    |
| Appearance/odor       | mg/L        | Cloudy white | Clear/odor                                      |                                | loudy/Bubbly/odc                                                                              |                                                                 |            | Cloudy w/ dark tin |
| DO                    | mg/L        | 0.86         | 0.76                                            |                                | 0.72                                                                                          |                                                                 |            | 0.74               |
| Ferrous Iron          | ft-bgs      | 2            | 0                                               |                                | 3                                                                                             |                                                                 |            | 2                  |
| Groundwater level     | mg/L        |              |                                                 | 12.77                          |                                                                                               | 13.36                                                           | 12.7       |                    |
| Methane               | ppm         |              |                                                 | 930                            |                                                                                               | 115                                                             | 1150       |                    |
| ORP                   | mV          | -158.7       | -94.2                                           |                                | -189.5                                                                                        |                                                                 |            | -210               |
| рН                    |             | 6.62         | 6.91                                            |                                | 6.33                                                                                          |                                                                 |            | 6.4                |
| Specific Conductivity | μS/cm       | 1696         | 1401                                            |                                | 1590                                                                                          |                                                                 |            | 1588               |
| Temperature           | °C          | 22.2         | 22.8                                            |                                | 23.3                                                                                          |                                                                 |            | 22.5               |
| Turbidity             | NTU         |              |                                                 |                                |                                                                                               |                                                                 |            |                    |
| Field Notes           |             |              | Alkalinity field<br>method as<br>CaCO2; Alk P=0 | High methane<br>gas @ wellhead | Field method as<br>CaCO2; High<br>methane<br>gas@wellhead.<br>High methane<br>gas @ wellhead. | Hand written<br>water level is not<br>clear, could be<br>15.36. |            |                    |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S139A      | S139A      | S139A                            | S139A       | S139A      | S139A       | S140A                                     |
|-----------------------|-------------|------------|------------|----------------------------------|-------------|------------|-------------|-------------------------------------------|
| DATE                  |             | 11/18/2020 | 11/18/2020 | 11/19/2020                       | 11/19/2020  | 11/20/2020 | 11/20/2020  | 11/11/2020                                |
| TIME                  |             | 14:10      | 14:30      | 14:01                            | 14:11       | 9:25       | 9:45        | 8:45                                      |
| PARAMETER             | Result Unit | Result     | Result     | Result                           | Result      | Result     | Result      | Result                                    |
| Alkalinity            |             |            |            |                                  |             |            | wax ===     |                                           |
| Appearance/odor       | mg/L        |            | Clear/odor |                                  | Tinted/odor |            | Clear, grey |                                           |
| DO                    | mg/L        | ****       | 0.75       | ****                             | 0.8         | ****       | 1           |                                           |
| Ferrous Iron          | ft-bgs      |            | 2.5        |                                  | 3.5         |            | 4           |                                           |
| Groundwater level     | mg/L        | 11.35      |            |                                  |             | 12.1       |             | 12.31                                     |
| Methane               | ppm         | 1100       |            | ****                             |             | 680        | ****        |                                           |
| ORP                   | mV          |            | -206.5     |                                  | -220.3      |            | -220.7      |                                           |
| рН                    |             |            | 6.39       |                                  | 6.51        |            | 6.51        |                                           |
| Specific Conductivity | μS/cm       |            | 1646       |                                  | 1622        |            | 1631        |                                           |
| Temperature           | °C          |            | 23         |                                  | 22.4        |            | 22.6        |                                           |
| Turbidity             | NTU         |            |            |                                  |             |            |             |                                           |
| Field Notes           |             |            |            | Active<br>monitoring<br>location |             |            |             | Used for<br>monitoring<br>mounding, INJ#8 |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S140A                                     | S140A                                     | S140A       | S140A        | S140A                                                                                              | S140A                                                              | S140A                                                              |
|-----------------------|-------------|-------------------------------------------|-------------------------------------------|-------------|--------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| DATE                  |             | 11/11/2020                                | 11/11/2020                                | 11/13/2020  | 11/13/2020   | 11/16/2020                                                                                         | 11/16/2020                                                         | 11/16/2020                                                         |
| TIME                  |             | 17:20                                     | 17:35                                     | 15:38       | 15:50        | 16:45                                                                                              | 17:00                                                              | 0:00                                                               |
| PARAMETER             | Result Unit | Result                                    | Result                                    | Result      | Result       | Result                                                                                             | Result                                                             | Result                                                             |
| Alkalinity            |             |                                           |                                           |             | was was      |                                                                                                    | was 1000                                                           |                                                                    |
| Appearance/odor       | mg/L        | Cloudy                                    |                                           |             | Light cloudy |                                                                                                    |                                                                    | Clear/bubbly                                                       |
| DO                    | mg/L        | 0.073                                     |                                           |             | 1.15         |                                                                                                    |                                                                    | 0.82                                                               |
| Ferrous Iron          | ft-bgs      | 1.5                                       |                                           |             | 2            |                                                                                                    |                                                                    | 2.5                                                                |
| Groundwater level     | mg/L        |                                           | 13.65                                     | 12.25       |              |                                                                                                    |                                                                    |                                                                    |
| Methane               | ррт         |                                           |                                           | 15          |              |                                                                                                    | 15                                                                 |                                                                    |
| ORP                   | mV          | -161.8                                    |                                           |             | -123.5       |                                                                                                    |                                                                    | -165.3                                                             |
| рН                    |             | 7.08                                      |                                           |             | 7.03         |                                                                                                    |                                                                    | 6.92                                                               |
| Specific Conductivity | μS/cm       | 1730                                      |                                           |             | 1710         |                                                                                                    |                                                                    | 1623                                                               |
| Temperature           | °C          | 21.8                                      |                                           | <del></del> | 21.7         |                                                                                                    |                                                                    | 22                                                                 |
| Turbidity             | NTU         |                                           |                                           | ***         |              |                                                                                                    |                                                                    |                                                                    |
| Field Notes           |             | Used for<br>monitoring<br>mounding, INJ#8 | Used for<br>monitoring<br>mounding, INJ#8 |             |              | water level not<br>measured; used<br>to monitor<br>injection 9 –<br>sampled at end<br>of injection | Used to monitor<br>injection 9 –<br>sampled at end<br>of injection | Used to monitor<br>injection 9 –<br>sampled at end<br>of injection |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S140A                                                                                                 | S140A                                                                                                       | S140A                                                                                                                  | S140A                                                                                | S140A      | S140A      | S140A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE                  |             | 11/17/2020                                                                                            | 11/17/2020                                                                                                  | 11/18/2020                                                                                                             | 11/18/2020                                                                           | 11/19/2020 | 11/19/2020 | 11/20/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TIME                  |             | 15:25                                                                                                 | 15:40                                                                                                       | 16:40                                                                                                                  | 16:50                                                                                | 16:30      | 16:50      | 13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PARAMETER             | Result Unit | Result                                                                                                | Result                                                                                                      | Result                                                                                                                 | Result                                                                               | Result     | Result     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Alkalinity            |             | man over                                                                                              | name name                                                                                                   |                                                                                                                        |                                                                                      |            | ***        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Appearance/odor       | mg/L        |                                                                                                       | Clear                                                                                                       |                                                                                                                        | Clear                                                                                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DO                    | mg/L        | ****                                                                                                  | 0.69                                                                                                        |                                                                                                                        | 0.87                                                                                 |            | 0.73       | - Table - Tabl |
| Ferrous Iron          | ft-bgs      |                                                                                                       | 2                                                                                                           |                                                                                                                        | 2.5                                                                                  |            | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Groundwater level     | mg/L        |                                                                                                       |                                                                                                             |                                                                                                                        |                                                                                      | 12         |            | 12.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Methane               | ppm         |                                                                                                       |                                                                                                             |                                                                                                                        |                                                                                      | 410        |            | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ORP                   | mV          |                                                                                                       | -175                                                                                                        |                                                                                                                        | -201.1                                                                               |            | -204.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| рН                    |             |                                                                                                       | 6.92                                                                                                        |                                                                                                                        | 6.66                                                                                 |            | 6.87       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Specific Conductivity | μS/cm       |                                                                                                       | 1631                                                                                                        |                                                                                                                        | 1817                                                                                 |            | 1556       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature           | °C          |                                                                                                       | 21.8                                                                                                        |                                                                                                                        | 22                                                                                   |            | 21.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turbidity             | NTU         | ****                                                                                                  | 400 VAN                                                                                                     |                                                                                                                        |                                                                                      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Notes           |             | Soil vapor cap<br>open; light to<br>mild rain. Water<br>level not<br>measured; Light<br>to mild rain. | Light to mild<br>rain; gauged to<br>monitor INJ-5 –<br>sampled during<br>injection process<br>low influence | Methane not<br>measured, soil<br>vapor cap open.<br>Water level not<br>measured, in use<br>for monitoring<br>injection | Injection<br>monitoring<br>location x INJ–11<br>– sampled during<br>INJ. in progress |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S140A           | S141A      | S141A      | S141A      | S141A        | S141A      | S141A        |
|-----------------------|-------------|-----------------|------------|------------|------------|--------------|------------|--------------|
| DATE                  |             | 11/20/2020      | 11/11/2020 | 11/11/2020 | 11/13/2020 | 11/13/2020   | 11/16/2020 | 11/16/2020   |
| TIME                  |             | 13:12           | 16:05      | 16:20      | 15:18      | 15:35        | 15:35      | 15:48        |
| PARAMETER             | Result Unit | Result          | Result     | Result     | Result     | Result       | Result     | Result       |
| Alkalinity            |             | ****            |            |            |            |              |            |              |
| Appearance/odor       | mg/L        | Clear grey tint |            | Clear      |            | Cloudy white |            | Clear/bubbly |
| DO                    | mg/L        | 0.73            |            | 0.87       |            | 0.8          |            | 0.77         |
| Ferrous Iron          | ft-bgs      | 2               |            | 0          |            | 0            |            | 0            |
| Groundwater level     | mg/L        |                 | 13.66      |            | 12.81      |              | 13.95      |              |
| Methane               | ppm         |                 |            |            | 0          |              | 530        |              |
| ORP                   | mV          | -194.8          |            | 96.9       |            | 21.8         |            | -8.4         |
| рН                    |             | 6.87            |            | 6.76       |            | 6.74         |            | 6.77         |
| Specific Conductivity | μS/cm       | 1666            |            | 1468       |            | 1776         |            | 1726         |
| Temperature           | °C          | 22.2            |            | 21.8       |            | 22.1         |            | 22.4         |
| Turbidity             | NTU         | ****            |            |            |            |              |            |              |
| Field Notes           |             |                 |            |            |            |              |            |              |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S141A      | S141A      | S141A                                                                                                           | S141A                                                               | S141A      | S141A      | S141A      |
|-----------------------|-------------|------------|------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------|------------|------------|
| DATE                  |             | 11/17/2020 | 11/17/2020 | 11/18/2020                                                                                                      | 11/18/2020                                                          | 11/19/2020 | 11/19/2020 | 11/20/2020 |
| TIME                  |             | 14:10      | 14:25      | 15:30                                                                                                           | 15:40                                                               | 14:58      | 15:15      | 10:55      |
| PARAMETER             | Result Unit | Result     | Result     | Result                                                                                                          | Result                                                              | Result     | Result     | Result     |
| Alkalinity            |             |            | name more  |                                                                                                                 |                                                                     |            |            |            |
| Appearance/odor       | mg/L        |            | Clear      |                                                                                                                 |                                                                     |            | Clear      |            |
| DO                    | mg/L        |            | 0.97       |                                                                                                                 | 0.87                                                                |            | 0.87       |            |
| Ferrous Iron          | ft-bgs      |            | 0          |                                                                                                                 | 0                                                                   |            | 0          |            |
| Groundwater level     | mg/L        | 12.85      |            |                                                                                                                 |                                                                     | 12.79      |            | 13.48      |
| Methane               | ppm         | 55         |            |                                                                                                                 |                                                                     | 85         |            | 85         |
| ORP                   | mV          |            | -60.5      |                                                                                                                 | -72.2                                                               |            | -47.5      |            |
| рН                    |             |            | 6.79       |                                                                                                                 | 6.78                                                                |            | 6.76       |            |
| Specific Conductivity | μS/cm       |            | 1722       |                                                                                                                 | 1773                                                                |            | 1782       |            |
| Temperature           | °C          |            | 21.1       |                                                                                                                 | 21.8                                                                |            | 22.1       |            |
| Turbidity             | NTU         | man ones   |            |                                                                                                                 |                                                                     |            |            |            |
| Field Notes           |             |            |            | Water level not<br>measured,<br>gauged w/<br>logger INJ-11.<br>Methane not<br>measured, soil<br>vapor cap open. | Used to monitor<br>INJ-11 – sampled<br>during injection<br>progress |            |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S141A      | S143A      | S143A        | S143A      | S143A             | S143A      | S143A         |
|-----------------------|-------------|------------|------------|--------------|------------|-------------------|------------|---------------|
| DATE                  |             | 11/20/2020 | 11/12/2020 | 11/12/2020   | 11/13/2020 | 11/13/2020        | 11/16/2020 | 11/16/2020    |
| TIME                  |             | 11:12      | 16:10      | 16:20        | 13:43      | 14:00             | 14:20      | 14:40         |
| PARAMETER             | Result Unit | Result     | Result     | Result       | Result     | Result            | Result     | Result        |
| Alkalinity            |             |            |            |              | www. ware  |                   | was area   |               |
| Appearance/odor       | mg/L        | Cloudy     |            | Cloudy white |            | oudy white/H2s od |            | Cloudy/bubbly |
| DO                    | mg/L        | 0.78       |            | 0.8          |            | 0.84              | ***        | 0.71          |
| Ferrous Iron          | ft-bgs      | 0          |            | 0            |            | 0                 |            | 0             |
| Groundwater level     | mg/L        |            | 12.55      |              | 12.35      |                   | 12.75      |               |
| Methane               | ppm         |            | 0          |              | 50         |                   | 55         |               |
| ORP                   | mV          | -60        |            | 47.8         |            | -4.7              |            | -186.7        |
| рН                    |             | 6.76       |            | 6.99         |            | 7.06              |            | 6.92          |
| Specific Conductivity | μS/cm       | 1956       |            | 1530         |            | 1463              |            | 1404          |
| Temperature           | °C          | 22.3       |            | 22.3         |            | 22.6              |            | 23.1          |
| Turbidity             | NTU         |            |            |              |            |                   |            |               |
| Field Notes           |             |            |            |              |            |                   |            |               |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S143A                       | S143A      | S143A      | S143A                                                                                                                        | S143A                                                               | S143A       | S143A        |
|-----------------------|-------------|-----------------------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|--------------|
| DATE                  |             | 11/17/2020                  | 11/17/2020 | 11/17/2020 | 11/18/2020                                                                                                                   | 11/18/2020                                                          | 11/20/2020  | 11/20/2020   |
| TIME                  |             | 14:30                       | 14:50      | 0:00       | 14:50                                                                                                                        | 15:05                                                               | 10:15       | 10:30        |
| PARAMETER             | Result Unit | Result                      | Result     | Result     | Result                                                                                                                       | Result                                                              | Result      | Result       |
| Alkalinity            |             |                             |            | name mann  |                                                                                                                              |                                                                     | Wall area   | wax ===      |
| Appearance/odor       | mg/L        |                             |            |            |                                                                                                                              | Clear                                                               |             | Clear        |
| DO                    | mg/L        |                             |            | 0.77       |                                                                                                                              | 0.74                                                                | ****        | 0.76         |
| Ferrous Iron          | ft-bgs      |                             |            | 0          |                                                                                                                              | 0                                                                   |             | 0.5          |
| Groundwater level     | mg/L        |                             |            |            |                                                                                                                              |                                                                     | 12.46       |              |
| Methane               | ppm         |                             | 115        |            | 50                                                                                                                           |                                                                     | 95          | Allian Union |
| ORP                   | mV          |                             |            | -124.1     |                                                                                                                              | -181.5                                                              |             | -207.2       |
| рН                    |             |                             |            | 7.36       |                                                                                                                              | 7.35                                                                |             | 7.25         |
| Specific Conductivity | μS/cm       |                             |            | 1486       |                                                                                                                              | 1338                                                                |             | 1347         |
| Temperature           | °C          |                             |            | 21.1       |                                                                                                                              | 22.1                                                                | <del></del> | 23.1         |
| Turbidity             | NTU         | ***                         | ***        |            |                                                                                                                              |                                                                     | A27 ===     |              |
| Field Notes           |             | Water level not<br>measured |            |            | water level not<br>measured,<br>gauged w/<br>logger. Used to<br>monitor INJ-11 -<br>sampled during<br>injection<br>progress. | Used to monitor<br>INJ-11 – sampled<br>during injection<br>progress |             |              |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |                                         | S145A                                          | S145A                                          | S146A      | S146A        | S146A      | S146A                    | S146A                    |
|-----------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------|------------|--------------|------------|--------------------------|--------------------------|
| DATE                  |                                         | 11/12/2020                                     | 11/12/2020                                     | 11/11/2020 | 11/11/2020   | 11/11/2020 | 11/12/2020               | 11/12/2020               |
| TIME                  | *************************************** | 9:05                                           | 9:20                                           | 8:27       | 16:21        | 16:35      | 16:27                    | 16:40                    |
| PARAMETER             | Result Unit                             | Result                                         | Result                                         | Result     | Result       | Result     | Result                   | Result                   |
| Alkalinity            |                                         |                                                |                                                |            |              |            |                          |                          |
| Appearance/odor       | mg/L                                    |                                                | Slightly cloudy                                |            | Milky cloudy |            |                          | Cloudy white             |
| DO                    | mg/L                                    |                                                | 0.91                                           |            | 0.78         | ****       |                          | 1.23                     |
| Ferrous Iron          | ft-bgs                                  |                                                |                                                |            | 1            |            |                          | 2.5                      |
| Groundwater level     | mg/L                                    | 13                                             |                                                | 12.19      |              | 12.34      | 9.65                     |                          |
| Methane               | ppm                                     |                                                |                                                |            |              |            | 75                       |                          |
| ORP                   | mV                                      |                                                | -110                                           |            | -64.7        |            |                          | -105.2                   |
| pH                    |                                         | <b>—</b> —                                     | 7.04                                           | — —        | 6.94         |            |                          | 6.88                     |
| Specific Conductivity | μS/cm                                   |                                                | 1460                                           |            | 1262         |            |                          | 1422                     |
| Temperature           | °C                                      |                                                | 21.8                                           |            | 21.5         |            |                          | 21.7                     |
| Turbidity             | NTU                                     | ***                                            | 1888 1888                                      | ***        |              |            |                          |                          |
| Field Notes           |                                         | Used to monitor<br>INJ #10 ~45'<br>from INJ PT | Used to monitor<br>INJ #10 ~45'<br>from INJ PT |            |              |            | Used to monitor<br>INJ-2 | Used to monitor<br>INJ-2 |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |                                         | S146A      | S146A        | S146A      | S146A                                                                                                  | S146A                                                          | S146A                                         | S146A                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------|------------|--------------|------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE                  |                                         | 11/13/2020 | 11/13/2020   | 11/16/2020 | 11/16/2020                                                                                             | 11/16/2020                                                     | 11/17/2020                                    | 11/17/2020                                                                                                                                                                                                |
| TIME                  | *************************************** | 14:18      | 14:35        | 12:00      | 16:25                                                                                                  | 0:00                                                           | 16:18                                         | 16:37                                                                                                                                                                                                     |
| PARAMETER             | Result Unit                             | Result     | Result       | Result     | Result                                                                                                 | Result                                                         | Result                                        | Result                                                                                                                                                                                                    |
| Alkalinity            |                                         |            |              | nor was    |                                                                                                        |                                                                |                                               | 1893                                                                                                                                                                                                      |
| Appearance/odor       | mg/L                                    |            | Cloudy white |            |                                                                                                        | Cloudy/bubbly                                                  |                                               | loudy/odor/bubbl                                                                                                                                                                                          |
| DO                    | mg/L                                    |            | 0.74         |            |                                                                                                        | 0.75                                                           |                                               | 0.68                                                                                                                                                                                                      |
| Ferrous Iron          | ft-bgs                                  |            | 2            |            |                                                                                                        | 3.5                                                            |                                               | 2.5                                                                                                                                                                                                       |
| Groundwater level     | mg/L                                    | 11.21      |              |            |                                                                                                        |                                                                |                                               |                                                                                                                                                                                                           |
| Methane               | ррт                                     | 410        |              |            |                                                                                                        |                                                                |                                               |                                                                                                                                                                                                           |
| ORP                   | mV                                      |            | -156.1       |            |                                                                                                        | -184.4                                                         |                                               | -189.3                                                                                                                                                                                                    |
| рН                    |                                         |            | 6.84         |            |                                                                                                        | 6.59                                                           |                                               | 6.57                                                                                                                                                                                                      |
| Specific Conductivity | μS/cm                                   |            | 1402         |            |                                                                                                        | 1294                                                           |                                               | 1311                                                                                                                                                                                                      |
| Temperature           | °C                                      |            | 21.8         |            |                                                                                                        | 21.9                                                           |                                               | 21.8                                                                                                                                                                                                      |
| Turbidity             | NTU                                     | ***        |              |            |                                                                                                        |                                                                |                                               |                                                                                                                                                                                                           |
| Field Notes           |                                         |            |              |            | water level not<br>measured; used<br>for monitoring<br>injection 9 –<br>sampled at end<br>of injection | Used for<br>monitoring INJ-9<br>sampled at end<br>of injection | Soil vapor cap<br>open; light to<br>mild rain | Light to mild<br>rain; gauged to<br>monitor INJ-5<br>during injection<br>process. Gauged<br>to monitor INJ-5-<br>sampled during<br>injection process.<br>Alkalinity field<br>method as<br>CaCO2; Alk P=0. |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S146A       | S146A       | S146A      | S146A         | S146A      | S146A              | S147A      |
|-----------------------|-------------|-------------|-------------|------------|---------------|------------|--------------------|------------|
| DATE                  |             | 11/18/2020  | 11/18/2020  | 11/19/2020 | 11/19/2020    | 11/20/2020 | 11/20/2020         | 11/19/2020 |
| TIME                  |             | 15:40       | 15:57       | 15:45      | 15:58         | 11:10      | 11:30              | 14:45      |
| PARAMETER             | Result Unit | Result      | Result      | Result     | Result        | Result     | Result             | Result     |
| Alkalinity            |             |             |             |            |               | ***        |                    | ****       |
| Appearance/odor       | mg/L        |             | Cloudy/odor |            | Milky/odorous |            | Milky w/ grey tint |            |
| DO                    | mg/L        |             | 0.8         |            | 0.74          |            | 0.77               | ***        |
| Ferrous Iron          | ft-bgs      |             | 3.5         |            | 3             |            | 3                  |            |
| Groundwater level     | mg/L        | 10.4        |             | 10.5       |               | 11.4       |                    | 12.28      |
| Methane               | ppm         | 55          |             | 430        |               | 840        |                    | 35         |
| ORP                   | mV          |             | -178.2      |            | -191.7        |            | -192.4             |            |
| рН                    |             |             | 6.6         |            | 6.67          |            | 6.29               |            |
| Specific Conductivity | μS/cm       |             | 1342        |            | 1350          |            | 1318               |            |
| Temperature           | °C          |             | 21.9        |            | 21.9          |            | 22                 |            |
| Turbidity             | NTU         |             |             |            |               |            |                    |            |
| Field Notes           |             | <del></del> |             |            |               |            |                    |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S147A       | S158A                                     | S158A                                     | S158A                                     | S158A       | S158A      | S158A      |
|-----------------------|-------------|-------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------|------------|------------|
| DATE                  |             | 11/19/2020  | 11/11/2020                                | 11/11/2020                                | 11/11/2020                                | 11/12/2020  | 11/12/2020 | 11/13/2020 |
| TIME                  |             | 14:58       | 8:30                                      | 17:00                                     | 1 <i>7</i> :11                            | 16:45       | 17:00      | 15:02      |
| PARAMETER             | Result Unit | Result      | Result                                    | Result                                    | Result                                    | Result      | Result     | Result     |
| Alkalinity            |             |             | mor near                                  |                                           |                                           |             |            | was 100    |
| Appearance/odor       | mg/L        | Cloudy/odor |                                           | Cloudy                                    |                                           |             | Clear      |            |
| DO                    | mg/L        | 0.8         |                                           | 0.79                                      |                                           |             | 0.89       |            |
| Ferrous Iron          | ft-bgs      | 1           |                                           | 0                                         |                                           |             | 0          |            |
| Groundwater level     | mg/L        |             | 12.25                                     |                                           | 12.44                                     | 11.68       |            | 12.2       |
| Methane               | ppm         |             |                                           |                                           | ***                                       | 350         |            | 125        |
| ORP                   | mV          | -196.2      |                                           | -65.3                                     |                                           |             | 17.1       |            |
| рН                    |             | 6.95        |                                           | 6.96                                      |                                           |             | 6.97       |            |
| Specific Conductivity | μS/cm       | 1530        |                                           | 1383                                      |                                           |             | 1314       |            |
| Temperature           | °C          | 22.7        |                                           | 22.4                                      |                                           | <del></del> | 22.5       |            |
| Turbidity             | NTU         | ***         | ***                                       |                                           |                                           |             |            |            |
| Field Notes           |             |             | Used for<br>monitoring INJ#3<br>and INJ#8 | Used for<br>monitoring INJ#3<br>and INJ#8 | Used for<br>monitoring INJ#3<br>and INJ#8 |             |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |                                         | S158A      | S158A      | S158A                                                                                                  | S158A                                                          | S158A                                                          | S158A                                                                                               | S158A                                                                                                                                                                                         |
|-----------------------|-----------------------------------------|------------|------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE                  |                                         | 11/13/2020 | 11/16/2020 | 11/16/2020                                                                                             | 11/16/2020                                                     | 11/16/2020                                                     | 11/17/2020                                                                                          | 11/17/2020                                                                                                                                                                                    |
| TIME                  | *************************************** | 15:15      | 12:00      | 16:30                                                                                                  | 16:42                                                          | 0:00                                                           | 15:05                                                                                               | 15:15                                                                                                                                                                                         |
| PARAMETER             | Result Unit                             | Result     | Result     | Result                                                                                                 | Result                                                         | Result                                                         | Result                                                                                              | Result                                                                                                                                                                                        |
| Alkalinity            |                                         |            |            |                                                                                                        | was was                                                        |                                                                | was area                                                                                            |                                                                                                                                                                                               |
| Appearance/odor       | mg/L                                    | Clear      |            |                                                                                                        |                                                                | Cloudy white                                                   |                                                                                                     | Milky                                                                                                                                                                                         |
| DO                    | mg/L                                    | 1.29       |            |                                                                                                        |                                                                | 1.64                                                           |                                                                                                     | 0.91                                                                                                                                                                                          |
| Ferrous Iron          | ft-bgs                                  | 0          |            |                                                                                                        |                                                                | 0.5                                                            |                                                                                                     | 0                                                                                                                                                                                             |
| Groundwater level     | mg/L                                    |            |            |                                                                                                        |                                                                |                                                                |                                                                                                     |                                                                                                                                                                                               |
| Methane               | ppm                                     |            |            |                                                                                                        | 15                                                             |                                                                | ***                                                                                                 | ***                                                                                                                                                                                           |
| ORP                   | mV                                      | -16.6      |            |                                                                                                        |                                                                | -74.5                                                          |                                                                                                     | -94.7                                                                                                                                                                                         |
| рН                    |                                         | 7.04       |            |                                                                                                        |                                                                | 6.95                                                           |                                                                                                     | 6.95                                                                                                                                                                                          |
| Specific Conductivity | μS/cm                                   | 1392       |            |                                                                                                        |                                                                | 1783                                                           |                                                                                                     | 1682                                                                                                                                                                                          |
| Temperature           | °C                                      | 22.4       |            |                                                                                                        |                                                                | 22.4                                                           | <del></del>                                                                                         | 22.2                                                                                                                                                                                          |
| Turbidity             | NTU                                     |            |            |                                                                                                        |                                                                |                                                                |                                                                                                     |                                                                                                                                                                                               |
| Field Notes           |                                         |            |            | water level not<br>measured; used<br>for monitoring<br>injection 9 –<br>sampled at end<br>of injection | Used for<br>monitoring INJ-9<br>sampled at end<br>of injection | Used for<br>monitoring INJ-9<br>sampled at end<br>of injection | Light to mild<br>rain; gauged to<br>monitor INJ-5<br>during injection<br>process - low<br>influence | Light to mild<br>rain; gauged to<br>monitor INJ–5<br>during injection<br>process – low<br>influence.<br>Gauged to<br>monitor INJ–5 –<br>sampled during<br>injection process<br>low influence. |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S158A      | S158A      | S158A      | S158A      | S158A      | S158A      | S159A      |
|-----------------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| DATE                  |             | 11/18/2020 | 11/18/2020 | 11/19/2020 | 11/19/2020 | 11/20/2020 | 11/20/2020 | 11/11/2020 |
| TIME                  |             | 16:20      | 16:32      | 16:15      | 16:35      | 11:50      | 12:19      | 15:30      |
| PARAMETER             | Result Unit | Result     |
| Alkalinity            |             |            |            |            | near was   |            |            |            |
| Appearance/odor       | mg/L        |            | Milky      |            | Cloudy     |            | Cloudy     |            |
| DO                    | mg/L        |            | 0.81       |            | 0.69       |            | 0.65       |            |
| Ferrous Iron          | ft-bgs      |            | 0.5        |            | 1          |            | 2          |            |
| Groundwater level     | mg/L        | 11.4       |            | 11.9       |            | 11.75      |            | 13.6       |
| Methane               | ppm         | 240        |            | 410        |            | 210        |            |            |
| ORP                   | mV          |            | -371.3     |            | -227.9     |            | -168.4     |            |
| рН                    |             |            | 6.73       |            | 6.5        |            | 6.41       |            |
| Specific Conductivity | μS/cm       |            | 1654       |            | 1632       |            | 1609       |            |
| Temperature           | °C          |            | 22         |            | 22.3       |            | 22.4       |            |
| Turbidity             | NTU         |            |            |            |            |            |            |            |
| Field Notes           |             |            |            |            |            |            |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S159A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S159A      | S159A      | S159A            | S159A        | S159A      | S159A      |
|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------------|--------------|------------|------------|
| DATE                  |             | 11/11/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11/12/2020 | 11/12/2020 | 11/13/2020       | 11/13/2020   | 11/17/2020 | 11/17/2020 |
| TIME                  |             | 15:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15:53      | 16:05      | 15:55            | 16:10        | 13:30      | 13:50      |
| PARAMETER             | Result Unit | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result     | Result     | Result           | Result       | Result     | Result     |
| Alkalinity            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |            |                  | non non      | was seen   |            |
| Appearance/odor       | mg/L        | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |            |                  | Cloudy white |            | Clear      |
| DO                    | mg/L        | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -0.9       |                  | 1.65         |            | 0.78       |
| Ferrous Iron          | ft-bgs      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0          |                  | 0            | new new    | 0          |
| Groundwater level     | mg/L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.6       |            | 10.61            |              | 13.5       |            |
| Methane               | ppm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50         |            | 0                |              | 155        |            |
| ORP                   | mV          | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -40.2      |                  | 5.3          |            | -138.5     |
| рН                    |             | 7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 6.97       |                  | 6.96         |            | 6.9        |
| Specific Conductivity | μS/cm       | 1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1425       |                  | 1435         |            | 1403       |
| Temperature           | °C          | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 22.1       |                  | 22.5         |            | 22.4       |
| Turbidity             | NTU         | NAME OF THE PARTY |            |            |                  |              |            |            |
| Field Notes           |             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            | Due to injection |              |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S159A      | S159A      | S159A                                                                           | S159A                                              | S159A                                                   | S159A                                                                                                      | S160A      |
|-----------------------|-------------|------------|------------|---------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|
| DATE                  |             | 11/18/2020 | 11/18/2020 | 11/19/2020                                                                      | 11/19/2020                                         | 11/20/2020                                              | 11/20/2020                                                                                                 | 11/11/2020 |
| TIME                  |             | 14:30      | 14:48      | 14:20                                                                           | 14:35                                              | 9:55                                                    | 10:05                                                                                                      | 15:44      |
| PARAMETER             | Result Unit | Result     | Result     | Result                                                                          | Result                                             | Result                                                  | Result                                                                                                     | Result     |
| Alkalinity            |             |            |            |                                                                                 |                                                    |                                                         |                                                                                                            |            |
| Appearance/odor       | mg/L        |            | Clear      |                                                                                 | Milky grey                                         | Milky                                                   |                                                                                                            |            |
| DO                    | mg/L        |            | 0.92       |                                                                                 | 2.18                                               | 0.78                                                    |                                                                                                            |            |
| Ferrous Iron          | ft-bgs      |            | 0          |                                                                                 | 0                                                  | 0.5                                                     |                                                                                                            |            |
| Groundwater level     | mg/L        | 1245       |            | NM                                                                              |                                                    |                                                         |                                                                                                            | 13.78      |
| Methane               | ppm         | 125        |            | 95                                                                              |                                                    | ***                                                     |                                                                                                            |            |
| ORP                   | mV          |            | -133.5     |                                                                                 | -46.8                                              | -232.4                                                  |                                                                                                            |            |
| рН                    |             |            | 6.84       |                                                                                 | 7.02                                               | 6.86                                                    |                                                                                                            |            |
| Specific Conductivity | μS/cm       |            | 1358       |                                                                                 | 1617                                               | 2410                                                    |                                                                                                            |            |
| Temperature           | °C          |            | 22.8       |                                                                                 | 21.7                                               | 21.5                                                    |                                                                                                            |            |
| Turbidity             | NTU         |            | and and    |                                                                                 |                                                    |                                                         |                                                                                                            |            |
| Field Notes           |             |            |            | Monitoring INJ-6<br>sampled during<br>INJ progress.<br>Active MNTR<br>location. | Monitoring INJ–6<br>sampled during<br>INJ progress | Monitoring INJ-6<br>sampled during<br>active injection. | Methane not<br>measured, soil<br>vapor cap open.<br>Water level not<br>measured, active<br>INJ monitoring. |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S160A          | S160A      | S160A              | S160A      | S160A      | S160A      | S160A      |
|-----------------------|-------------|----------------|------------|--------------------|------------|------------|------------|------------|
| DATE                  |             | 11/11/2020     | 11/12/2020 | 11/12/2020         | 11/13/2020 | 11/13/2020 | 11/16/2020 | 11/16/2020 |
| TIME                  |             | 16:00          | 17:00      | 17:19              | 14:00      | 14:15      | 15:18      | 15:30      |
| PARAMETER             | Result Unit | Result         | Result     | Result             | Result     | Result     | Result     | Result     |
| Alkalinity            |             | ALUE ALUE      | name risea |                    |            |            |            |            |
| Appearance/odor       | mg/L        | Silty / Cloudy |            | loudy white & silt |            | Clear      |            | Clear      |
| DO                    | mg/L        | 0.81           |            | 1.71               |            | 1.98       |            | 0.77       |
| Ferrous Iron          | ft-bgs      | 0              |            | 0.5                |            | 0          |            | 0.5        |
| Groundwater level     | mg/L        |                | 9.6        |                    | 12.6       |            | 14.04      |            |
| Methane               | ppm         |                | 50         |                    | 10         |            | 3000       |            |
| ORP                   | mV          | -0.9           |            | 19.7               |            | 27.4       |            | -134.2     |
| рН                    |             | 6.79           |            | 6.83               |            | 6.88       |            | 6.56       |
| Specific Conductivity | μS/cm       | 1828           |            | 2137               |            | 2083       |            | 1681       |
| Temperature           | °C          | 21.4           |            | 22.3               |            | 21.8       |            | 21.9       |
| Turbidity             | NTU         |                |            |                    |            |            |            |            |
| Field Notes           |             |                |            |                    |            |            |            |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |             | S160A        | S160A       | S160A                      | S160A      | S160A      | S160A       | S160A      |
|-----------------------|-------------|--------------|-------------|----------------------------|------------|------------|-------------|------------|
| DATE                  |             | 11/17/2020   | 11/17/2020  | 11/18/2020                 | 11/18/2020 | 11/19/2020 | 11/19/2020  | 11/20/2020 |
| TIME                  |             | 14:00        | 14:10       | 15:05                      | 15:25      | 15:15      | 15:35       | 10:35      |
| PARAMETER             | Result Unit | Result       | Result      | Result                     | Result     | Result     | Result      | Result     |
| Alkalinity            | neer neer   |              | name record |                            | NAME AND A |            |             |            |
| Appearance/odor       | mg/L        |              |             |                            | Silty      |            | Cloudy/odor |            |
| DO                    | mg/L        |              | 0.79        |                            | 0.79       |            | 0.78        |            |
| Ferrous Iron          | ft-bgs      |              | 1           |                            | 1.5        |            | 1.5         |            |
| Groundwater level     | mg/L        | 13.75        |             | 13.25                      |            | 12.55      |             | 13.54      |
| Methane               | ppm         | 2200         | ***         | 1250                       |            | 35         |             | 880        |
| ORP                   | mV          |              | -125        |                            | -99        |            | -123.9      |            |
| рН                    |             | <u> </u>     | 6.46        |                            | 6.61       | <u> </u>   | 6.67        |            |
| Specific Conductivity | μS/cm       |              | 1717        |                            | 1696       |            | 1697        |            |
| Temperature           | °C          |              | 21.2        |                            | 21.6       |            | 21.8        |            |
| Turbidity             | NTU         | water vision |             |                            |            |            |             |            |
| Field Notes           |             |              |             | Second reading =<br>57 ppm |            | Open       |             |            |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



| WELL ID               |            | S160A |  |  |
|-----------------------|------------|-------|--|--|
| DATE                  | 11/20/2020 |       |  |  |
| TIME                  |            | 10:52 |  |  |
| PARAMETER             |            |       |  |  |
| Alkalinity            |            |       |  |  |
| Appearance/odor       | mg/L       | Clear |  |  |
| DO                    | mg/L       | 1.31  |  |  |
| Ferrous Iron          | ft-bgs     | 1.5   |  |  |
| Groundwater level     | mg/L       |       |  |  |
| Methane               | ppm        |       |  |  |
| ORP                   | mV         | -92.1 |  |  |
| рН                    |            | 6.72  |  |  |
| Specific Conductivity | μS/cm      | 1844  |  |  |
| Temperature           | °C         | 21.9  |  |  |
| Turbidity             | NTU        | ***   |  |  |
| Field Notes           |            |       |  |  |

### NOTES:

-- = an observation was not recorded μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ferrous Iron = Ferrous Ironrrous Iron Ft-bgs = Ferrous Ironet below ground surface Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit ORP = Oxidation Reduction Potential



# TABLE 3 INJECTION GROUNDWATER SAMPLING RESULTS EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| A       | nalytical Meth | od                |                           | SM 23                   | 120B                    |                     | SM 5310C                |
|---------|----------------|-------------------|---------------------------|-------------------------|-------------------------|---------------------|-------------------------|
| Well ID | Sample Date    | Sample<br>Purpose | Bicarbonate<br>Alkalinity | Carbonate<br>Alkalinity | Hydroxide<br>Alkalinity | Total<br>Alkalinity | Total Organic<br>Carbon |
|         | Result Unit    |                   | mg/L                      | mg/L                    | mg/L                    | mg/L                | mg/L                    |
| S049A   | 11/16/2020     | REG               | 450                       | ND 5.0                  | ND 5.0                  | 450                 | 2.8                     |
| S049A   | 11/18/2020     | REG               | 450                       | ND 5.0                  | ND 5.0                  | 450                 | 2.2                     |
| S049A   | 11/20/2020     | REG               | 450                       | ND 5.0                  | ND 5.0                  | 450                 | 2.1 ^                   |
| S137A   | 11/11/2020     | REG               | 420                       | ND 5.0                  | ND 5.0                  | 420                 | 1.5                     |
| S137A   | 11/12/2020     | REG               | 490                       | ND 5.0                  | ND 5.0                  | 490                 | 180 ^                   |
| S137A   | 11/13/2020     | REG               | 490                       | ND 5.0                  | ND 5.0                  | 490                 | 250 ^                   |
| S137A   | 11/16/2020     | REG               | 480                       | ND 5.0                  | ND 5.0                  | 480                 | 220                     |
| S137A   | 11/17/2020     | REG               | 440                       | ND 5.0                  | ND 5.0                  | 440                 | 360                     |
| S137A   | 11/18/2020     | REG               | 380                       | ND 5.0                  | ND 5.0                  | 380                 | 150                     |
| S137A   | 11/19/2020     | REG               | 330                       | ND 5.0                  | ND 5.0                  | 330                 | 140                     |
| S137A   | 11/20/2020     | REG               | 380                       | ND 5.0                  | ND 5.0                  | 380                 | 520                     |
| S138A   | 11/11/2020     | REG               | 440                       | ND 5.0                  | ND 5.0                  | 440                 | 14                      |
| S138A   | 11/12/2020     | REG               | 470                       | ND 5.0                  | ND 5.0                  | 470                 | 23 B,^                  |
| S138A   | 11/13/2020     | REG               | 480                       | ND 5.0                  | ND 5.0                  | 480                 | 32                      |
| S138A   | 11/16/2020     | REG               | 460                       | ND 5.0                  | ND 5.0                  | 460                 | 17                      |
| S138A   | 11/17/2020     | REG               | 680                       | ND 5.0                  | ND 5.0                  | 680                 | 220                     |
| S138A   | 11/18/2020     | REG               | 590                       | ND 5.0                  | ND 5.0                  | 590                 | 170                     |
| S138A   | 11/19/2020     | REG               | 600                       | ND 5.0                  | ND 5.0                  | 600                 | 110 ^                   |
| S138A   | 11/20/2020     | REG               | 580                       | ND 5.0                  | ND 5.0                  | 580                 | 490                     |
| S139A   | 11/11/2020     | REG               | 620                       | ND 5.0                  | ND 5.0                  | 620                 | 13                      |
| S139A   | 11/12/2020     | REG               | 670                       | ND 5.0                  | ND 5.0                  | 670                 | 32 ^                    |
| S139A   | 11/13/2020     | REG               | 680                       | ND 5.0                  | ND 5.0                  | 680                 | 78 ^                    |
| S139A   | 11/16/2020     | REG               | 620                       | ND 5.0                  | ND 5.0                  | 620                 | 190                     |
| S139A   | 11/17/2020     | REG               | 610                       | ND 5.0                  | ND 5.0                  | 610                 | 140                     |
| S139A   | 11/18/2020     | REG               | 630                       | ND 5.0                  | ND 5.0                  | 630                 | 77                      |
| S139A   | 11/19/2020     | REG               | 630                       | ND 5.0                  | ND 5.0                  | 630                 | 66                      |
| S139A   | 11/20/2020     | REG               | 650                       | ND 5.0                  | ND 5.0                  | 650                 | 61                      |
| S140A   | 11/10/2020     | REG               | 400                       | ND 5.0                  | ND 5.0                  | 400                 | 2.3 ^                   |
| S140A   | 11/11/2020     | REG               | 600                       | ND 5.0                  | ND 5.0                  | 600                 | 53                      |
| S140A   | 11/13/2020     | REG               | 580                       | ND 5.0                  | ND 5.0                  | 580                 | 46                      |
| S140A   | 11/16/2020     | REG               | 540                       | ND 5.0                  | ND 5.0                  | 540                 | 46                      |
| S140A   | 11/17/2020     | REG               | 550                       | ND 5.0                  | ND 5.0                  | 550                 | 45                      |
| S140A   | 11/18/2020     | REG               | 710                       | ND 5.0                  | ND 5.0                  | 710                 | 120                     |
| S140A   | 11/19/2020     | REG               | 560                       | ND 5.0                  | ND 5.0                  | 560                 | 56                      |
| S140A   | 11/20/2020     | REG               | 560                       | ND 5.0                  | ND 5.0                  | 560                 | 54                      |
| S141A   | 11/12/2020     | REG               | 510                       | ND 5.0                  | ND 5.0                  | 510                 | 5.1 ^                   |



# TABLE 3 INJECTION GROUNDWATER SAMPLING RESULTS EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| Δ       | nalytical Meth | od      |             | SM 23      | 320B       |            | SM 5310C      |
|---------|----------------|---------|-------------|------------|------------|------------|---------------|
| Well ID | Sample Date    | Sample  | Bicarbonate | Carbonate  | Hydroxide  | Total      | Total Organic |
| WCII 1D |                | Purpose | Alkalinity  | Alkalinity | Alkalinity | Alkalinity | Carbon        |
|         | Result Unit    |         | mg/L        | mg/L       | mg/L       | mg/L       | mg/L          |
| S141A   | 11/13/2020     | REG     | 540         | ND 5.0     | ND 5.0     | 540        | 28            |
| S141A   | 11/16/2020     | REG     | 570         | ND 5.0     | ND 5.0     | 570        | ND 40         |
| S141A   | 11/17/2020     | REG     | 600         | ND 5.0     | ND 5.0     | 600        | ND 10         |
| S141A   | 11/18/2020     | REG     | 640         | ND 5.0     | ND 5.0     | 640        | 7.3           |
| S141A   | 11/19/2020     | REG     | 620         | ND 5.0     | ND 5.0     | 620        | 11 ^          |
| S141A   | 11/20/2020     | REG     | 610         | ND 5.0     | ND 5.0     | 610        | 19            |
| S143A   | 11/10/2020     | REG     | 410         | ND 5.0     | ND 5.0     | 410        | 2.9 ^         |
| S143A   | 11/12/2020     | REG     | 410         | ND 5.0     | ND 5.0     | 410        | 56            |
| S143A   | 11/13/2020     | REG     | 420         | ND 5.0     | ND 5.0     | 420        | 41 B, ^       |
| S143A   | 11/16/2020     | REG     | 340         | ND 5.0     | ND 5.0     | 340        | ND 50         |
| S143A   | 11/17/2020     | REG     | 380         | ND 5.0     | ND 5.0     | 380        | 26            |
| S143A   | 11/18/2020     | REG     | 260         | ND 5.0     | ND 5.0     | 260        | 20            |
| S143A   | 11/19/2020     | REG     | 450         | ND 5.0     | ND 5.0     | 450        | 28            |
| S143A   | 11/20/2020     | REG     | 350         | ND 5.0     | ND 5.0     | 350        | 27            |
| S145A   | 11/12/2020     | REG     | NS          | NS         | NS         | NS         | 2.5 ^         |
| S146A   | 11/11/2020     | REG     | 450         | ND 5.0     | ND 5.0     | 450        | 35 ^          |
| S146A   | 11/12/2020     | REG     | 550         | ND 5.0     | ND 5.0     | 550        | 19 ^          |
| S146A   | 11/13/2020     | REG     | 510         | ND 5.0     | ND 5.0     | 510        | 24            |
| S146A   | 11/16/2020     | REG     | 450         | ND 5.0     | ND 5.0     | 450        | 160           |
| S146A   | 11/17/2020     | REG     | 470         | ND 5.0     | ND 5.0     | 470        | 37            |
| S146A   | 11/18/2020     | REG     | 480         | ND 5.0     | ND 5.0     | 480        | ND 40         |
| S146A   | 11/19/2020     | REG     | 480         | ND 5.0     | ND 5.0     | 480        | 42 ^          |
| S146A   | 11/20/2020     | REG     | 430         | ND 5.0     | ND 5.0     | 430        | 170           |
| S158A   | 11/11/2020     | REG     | 410         | ND 5.0     | ND 5.0     | 410        | 3.3           |
| S158A   | 11/12/2020     | REG     | 410         | ND 5.0     | ND 5.0     | 410        | 5.8 ^         |
| S158A   | 11/13/2020     | REG     | 400         | ND 5.0     | ND 5.0     | 400        | 2.5           |
| S158A   | 11/16/2020     | REG     | 570         | ND 5.0     | ND 5.0     | 570        | 240           |
| S158A   | 11/17/2020     | REG     | 530         | ND 5.0     | ND 5.0     | 530        | 180           |
| S158A   | 11/18/2020     | REG     | 520         | ND 5.0     | ND 5.0     | 520        | 180           |
| S158A   | 11/19/2020     | REG     | 490         | ND 5.0     | ND 5.0     | 490        | 120 ^         |
| S158A   | 11/20/2020     | REG     | 580         | ND 5.0     | ND 5.0     | 580        | 170           |
| S159A   | 11/11/2020     | REG     | 440         | ND 5.0     | ND 5.0     | 440        | 4.6           |
| S159A   | 11/12/2020     | REG     | 430         | ND 5.0     | ND 5.0     | 430        | 4.6 ^         |
| S159A   | 11/13/2020     | REG     | 430         | ND 5.0     | ND 5.0     | 430        | 7.4 ^         |
| S159A   | 11/16/2020     | REG     | 430         | ND 5.0     | ND 5.0     | 430        | 2.9           |
| S159A   | 11/17/2020     | REG     | 440         | ND 5.0     | ND 5.0     | 440        | 6.2           |



# TABLE 3 INJECTION GROUNDWATER SAMPLING RESULTS EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| A       | nalytical Meth | od                |                           | SM 23                   | 20B                     |                     | SM 5310C                |
|---------|----------------|-------------------|---------------------------|-------------------------|-------------------------|---------------------|-------------------------|
| Well ID | Sample Date    | Sample<br>Purpose | Bicarbonate<br>Alkalinity | Carbonate<br>Alkalinity | Hydroxide<br>Alkalinity | Total<br>Alkalinity | Total Organic<br>Carbon |
|         | Result Unit    |                   | mg/L                      | mg/L                    | mg/L                    | mg/L                | mg/L                    |
| S159A   | 11/18/2020     | REG               | 430                       | ND 5.0                  | ND 5.0                  | 430                 | 4.0                     |
| S159A   | 11/19/2020     | REG               | 540                       | ND 5.0                  | ND 5.0                  | 540                 | 78                      |
| S159A   | 11/20/2020     | REG               | 890                       | ND 5.0                  | ND 5.0                  | 890                 | 580                     |
| S160A   | 11/11/2020     | REG               | 710                       | ND 5.0                  | ND 5.0                  | 710                 | 5.4                     |
| S160A   | 11/12/2020     | REG               | 710                       | ND 5.0                  | ND 5.0                  | 710                 | 5.2 ^                   |
| S160A   | 11/13/2020     | REG               | 680                       | ND 5.0                  | ND 5.0                  | 680                 | 4.2                     |
| S160A   | 11/16/2020     | REG               | 640                       | ND 5.0                  | ND 5.0                  | 640                 | 21.0                    |
| S160A   | 11/17/2020     | REG               | 650                       | ND 5.0                  | ND 5.0                  | 650                 | 57.0                    |
| S160A   | 11/18/2020     | REG               | 660                       | ND 5.0                  | ND 5.0                  | 660                 | 6.8                     |
| S160A   | 11/19/2020     | REG               | 680                       | ND 5.0                  | ND 5.0                  | 680                 | 4.7 ^                   |
| S160A   | 11/20/2020     | REG               | 640                       | ND 5.0                  | ND 5.0                  | 640                 | 5.6                     |

## NOTES:

 $\Lambda$  = Instrument related QC is outside acceptance limits

B = Compound was found in the blank and sample

mg/L = Milligrams per liter

ND 5.0 = An non-detect at the reporting of 5.0



| WELL ID               |             | S025A     | S025A      | S025A     | S025A     | S049A     | S049A      | S049A                                                                               |
|-----------------------|-------------|-----------|------------|-----------|-----------|-----------|------------|-------------------------------------------------------------------------------------|
| DATE                  |             | 9/14/2020 | 12/15/2020 | 5/18/2021 | 11/9/2021 | 9/15/2020 | 12/16/2020 | 1/18/2021                                                                           |
| TIME                  |             | 12:21     | 11:03      | 7:30      | 10:43     | 8:19      | 7:39       | 12:28                                                                               |
| PARAMETER             | Result Unit | Result    | Result     | Result    | Result    | Result    | Result     | Result                                                                              |
| DO                    | mg/L        | 0.2       | 0.36       | 2.65      | 0.64      | 0.2       | 0.44       | 0.32                                                                                |
| Ferrous Iron          | mg/L        | 0         | 0.5        | 0         | 0.5       | 0         | 0.5        | 1                                                                                   |
| Groundwater level     | ft-bgs      | 12.41     | 12.78      | 20.1      | 12.74     | 10.21     | 10.1       | 10.17                                                                               |
| Manganese             | mg/L        | AD        | 0.77       | 0.26      | 0.77      | 100 100   | 0.77       | LEG VAN                                                                             |
| Methane               | ppm         | 0         | 230        | 0         | 0         | 0         | 160        | 1000                                                                                |
| ORP                   | mV          | 116.4     | -11.1      | 59.6      | 48        | -42.1     | -56        | 17.9                                                                                |
| рН                    |             | 6.76      | 6.63       | 6.76      | 6.79      | 6.88      | 6.6        | 6.71                                                                                |
| Specific Conductivity | μS/cm       | 1646      | 1455       | 1328      | 1456      | 1416      | 1262       | 1618                                                                                |
| Temperature           | (°C)        | 21        | 21.3       | 20.1      | 21.6      | 20.2      | 18.9       | 20.6                                                                                |
| Turbidity             | NTU         | 8.6       | 85.72      | 1.45      | 3.6       | 11.4      | 3.62       | 7.36                                                                                |
| Field Notes           |             |           |            |           |           |           |            | Presence of bio<br>material, brown<br>orange in initial 1<br>gal of purge<br>water. |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S049A     | S049A     | S049A     | S049A     | S088A     | S088A      | S088A     |
|-----------------------|-------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| DATE                  |             | 2/16/2021 | 5/18/2021 | 8/18/2021 | 11/9/2021 | 9/14/2020 | 12/15/2020 | 5/18/2021 |
| TIME                  |             | 7:46      | 9:30      | 8:55      | 9:35      | 9:15      | 10:00      | 8:29      |
| PARAMETER             | Result Unit | Result    | Result    | Result    | Result    | Result    | Result     | Result    |
| DO                    | mg/L        | 1.35      | 2.58      | 0.63      | 0.81      | 0.3       | 0.51       | 2.79      |
| Ferrous Iron          | mg/L        | 0.5       | 1         | 1         | 1         | 0         | 0.5        | 0         |
| Groundwater level     | ft-bgs      | 9.73      | 10.95     | 10.45     | 10.22     | 13.39     | 12.4       | 13.17     |
| Manganese             | mg/L        | and and   | 0.77      | 0.77      | 0.77      | LAS INC   | 0.66       | 0.42      |
| Methane               | ppm         | 8800      | 0         | 0         | 0         | 0         | 1050       | 0         |
| ORP                   | mV          | -290      | -38.7     | -52.9     | -23.8     | -77.6     | -86        | -41.9     |
| рН                    |             | 6.69      | 6.6       | 6.53      | 6.62      | 7.02      | 6.93       | 7.04      |
| Specific Conductivity | μS/cm       | 1488      | 1507      | 1782      | 1704      | 1457      | 1266       | 1248      |
| Temperature           | (°C)        | 18.9      | 19.4      | 20.4      | 20.3      | 19.9      | 19.3       | 18.4      |
| Turbidity             | NTU         | 0.7       | 1.44      | 0.02      | 54.7      | 21.8      | 8.17       | 6.83      |
| Field Notes           |             |           |           |           |           |           |            |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S088A     | S134A     | S134A      | S134A     | S134A     | S134A     | S134A     |
|-----------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/9/2021 | 9/14/2020 | 12/15/2020 | 1/18/2021 | 2/15/2021 | 5/17/2021 | 8/17/2021 |
| TIME                  |             | 8:45      | 8:27      | 8:30       | 9:55      | 11:14     | 9:50      | 11:38     |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.71      | 0.3       | 0.6        | 0.42      | 0.39      | 1.37      | 2.72      |
| Ferrous Iron          | mg/L        | 1.5       | 0         | 0          | 0         | 0         | 0         | 0         |
| Groundwater level     | ft-bgs      | 13.43     | 8.2       | 7.61       | 8.03      | 7.45      | 7.47      | 7.61      |
| Manganese             | mg/L        | 0.77      |           | 0.21       |           | 0.64      | ARE USA   | 0.56      |
| Methane               | ppm         | 0         | 550       | 180        | 195       | 1100      | 175       | 0         |
| ORP                   | mV          | -97.3     | 9.9       | -37.4      | -75.4     | 23.3      | 26.2      | -6.7      |
| рН                    |             | 7.14      | 7.02      | 7.05       | 7.05      | 6.94      | 7.01      | 7.03      |
| Specific Conductivity | μS/cm       | 1267      | 1295      | 1266       | 1268      | 1170      | 1187      | 1145      |
| Temperature           | (°C)        | 19.2      | 23.4      | 23.5       | 21.1      | 21.1      | 20        | 20.5      |
| Turbidity             | NTU         | 3.5       | 3         | 3.5        | 37.05     | 33.27     | 97.3      | 4.56      |
| Field Notes           |             |           |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S134A     | S137A     | S137A      | S137A                                                                               | S137A         | S137A     | S137A     |
|-----------------------|-------------|-----------|-----------|------------|-------------------------------------------------------------------------------------|---------------|-----------|-----------|
| DATE                  |             | 11/8/2021 | 9/15/2020 | 12/17/2020 | 1/18/2021                                                                           | 2/15/2021     | 5/17/2021 | 8/17/2021 |
| TIME                  |             | 12:07     | 11:30     | 7:50       | 11:19                                                                               | 9:03          | 8:30      | 7:39      |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result                                                                              | Result        | Result    | Result    |
| DO                    | mg/L        | 0.67      | 0.3       | 0.57       | 0.32                                                                                | 1.33          | 2.69      | 0.7       |
| Ferrous Iron          | mg/L        | 0         | 0         | 2          | 4                                                                                   | 2.5           | 4         | 4.5       |
| Groundwater level     | ft-bgs      | 8.08      | 12.5      | 12.19      | 12.26                                                                               | 11.8          | 11.98     | 12.32     |
| Manganese             | mg/L        | 0.35      | nan san   | 0.77       | ALIAN ARIAN                                                                         | AMA AMA       | 0.77      | 0.77      |
| Methane               | ppm         | 130       | 0         | 530        | 50250                                                                               |               | 2200      | 9600      |
| ORP                   | mV          | -3.3      | -8.6      | -155.9     | -189                                                                                | -110.7        | -141.1    | -144.5    |
| рН                    |             | 6.95      | 6.91      | 6.94       | 6.7                                                                                 | 6.56          | 6.73      | 6.68      |
| Specific Conductivity | μS/cm       | 1314      | 1352      | 692        | 804                                                                                 | 821           | 862       | 1491      |
| Temperature           | (°C)        | 24.5      | 22.7      | 20.2       | 22.4                                                                                | 21            | 21.1      | 22.6      |
| Turbidity             | NTU         | 2.44      | 8.4       | 300.03     | 134.26                                                                              | 324.7         | 3.48      | 5.17      |
| Field Notes           |             |           |           |            | High initial<br>methane, meter<br>max. 5,000 ppm<br>after opened for<br>10 minutes. | Meter maximum |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S137A     | S138A     | S138A      | S138A     | S138A     | S138A     | S138A     |
|-----------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/8/2021 | 9/16/2020 | 12/18/2020 | 1/20/2021 | 2/17/2021 | 5/19/2021 | 8/19/2021 |
| TIME                  |             | 10:30     | 11:00     | 8:27       | 9:20      | 11:09     | 9:00      | 7:40      |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.59      | 0.2       | 0.25       | 0.23      | 1.3       | 1.92      | 0.55      |
| Ferrous Iron          | mg/L        | 5.5       | 1.5       | 1          | 0         | 0.5       | 1         | 1         |
| Groundwater level     | ft-bgs      | 12.13     | 13.27     | 13.05      | 13.17     | 12.71     |           | 13.15     |
| Manganese             | mg/L        | 0.77      |           | 0.77       |           | 100 100   | 0.77      | 0.77      |
| Methane               | ppm         | 670       | 0         | 230        | 22250     | 4400      | 42250     | 34000     |
| ORP                   | mV          | -120.7    | -144.6    | -283.1     | -306.6    | -293.5    | -281.7    | -220.1    |
| рН                    |             | 6.77      | 7.11      | 6.25       | 6.7       | 6.72      | 6.61      | 6.55      |
| Specific Conductivity | μS/cm       | 1600      | 1162      | 1023       | 1073      | 1041      | 960       | 1153      |
| Temperature           | (°C)        | 23.8      | 22.1      | 21.3       | 21        | 21.7      | 21.7      | 22.8      |
| Turbidity             | NTU         | 38.4      | 28.5      | 660.18     | 12.91     | 123.9     | 0.97      | 0.58      |
| Field Notes           |             |           |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S138A      | S139A     | S139A      | S139A                                 | S139A         | S139A     | S139A     |
|-----------------------|-------------|------------|-----------|------------|---------------------------------------|---------------|-----------|-----------|
| DATE                  |             | 11/10/2021 | 9/16/2020 | 12/17/2020 | 1/18/2021                             | 2/16/2021     | 5/18/2021 | 8/18/2021 |
| TIME                  |             | 7:35       | 7:38      | 9:03       | 8:30                                  | 8:35          | 12:03     | 11:25     |
| PARAMETER             | Result Unit | Result     | Result    | Result     | Result                                | Result        | Result    | Result    |
| DO                    | mg/L        | 0.61       | 0.3       | 0.16       | 0.22                                  | 1.23          | 2.27      | 0.75      |
| Ferrous Iron          | mg/L        | 0.5        | 2         | 0.5        | 0                                     | 1             | 4.5       | 5.5       |
| Groundwater level     | ft-bgs      | 13.04      | 13.34     | 13.05      | 13.14                                 | 12.65         | 12.75     | 13.3      |
| Manganese             | mg/L        | 0.77       |           | 0.77       |                                       | MAN 1888      | 0.77      | 0.77      |
| Methane               | ppm         | 11250      | 0         | 2050       | 50250                                 |               | 720       | 9400      |
| ORP                   | mV          | -183.7     | -45.7     | -251.7     | -306.2                                | -233.5        | -128.5    | -102.9    |
| рН                    |             | 6.77       | 6.6       | 6.54       | 6.68                                  | 6.65          | 6.59      | 6.57      |
| Specific Conductivity | μS/cm       | 1079       | 1384      | 1407       | 1647                                  | 1722          | 1601      | 1890      |
| Temperature           | (°C)        | 23.4       | 22.3      | 21.8       | 21.6                                  | 21.3          | 22        | 24.7      |
| Turbidity             | NTU         | 1.3        | 3.4       | 379.77     | 161.2                                 | 105.1         | 1.3       | 3.46      |
| Field Notes           |             |            |           |            | High initial<br>methane, meter<br>max | Meter maximum |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S139A      | S140A     | S140A      | S140A     | S140A     | S140A     | S140A     |
|-----------------------|-------------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/10/2021 | 9/16/2020 | 12/18/2020 | 1/20/2021 | 2/17/2021 | 5/19/2021 | 8/19/2021 |
| TIME                  |             | 8:50       | 10:00     | 9:40       | 11:27     | 13:05     | 12:15     | 9:57      |
| PARAMETER             | Result Unit | Result     | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.66       | 0.2       | 0.12       | 0.27      | 1.39      | 1.94      | 0.62      |
| Ferrous Iron          | mg/L        | 4          | 1         | 0.5        | 1         | 1.5       | 1.5       | 1         |
| Groundwater level     | ft-bgs      | 13.09      | 13.66     | 13.15      | 13.41     | 12.96     |           | 13.53     |
| Manganese             | mg/L        | 0.77       |           | 0.77       |           | 100 100   | 0.77      | 0.77      |
| Methane               | ppm         | 2000       | 195       | 4500       | 2900      | 1600      | 0         | 2550      |
| ORP                   | mV          | -103.8     | -79.8     | -310.2     | -267.2    | -124.9    | -131.5    | -207.9    |
| рН                    |             | 6.65       | 7.1       | 6.91       | 7.03      | 7         | 7.03      | 6.96      |
| Specific Conductivity | μS/cm       | 1573       | 1307      | 1428       | 1385      | 1278      | 1197      | 1504      |
| Temperature           | (°C)        | 24.1       | 21.6      | 22         | 22.1      | 21.7      | 22        | 23.3      |
| Turbidity             | NTU         | 10.6       | 20.2      | 298.2      | 0.97      | 16.3      | 0.57      | 0         |
| Field Notes           |             |            |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S140A      | S141A     | S141A      | S141A     | S141A     | S141A     | S141A     |
|-----------------------|-------------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/10/2021 | 9/15/2020 | 12/16/2020 | 1/19/2021 | 2/16/2021 | 5/19/2021 | 8/18/2021 |
| TIME                  |             | 11:20      | 9:15      | 10:04      | 12:00     | 10:45     | 7:40      | 7:43      |
| PARAMETER             | Result Unit | Result     | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.7        | 0.3       | 0.53       | 0.45      | 1.37      | 2.07      | 0.65      |
| Ferrous Iron          | mg/L        | 0.5        | 0         | 5          | 5.5       | 2.5       | 5         | 3.5       |
| Groundwater level     | ft-bgs      | 13.28      | 14.4      | 14.51      | 14.55     | 14.18     |           | 14.75     |
| Manganese             | mg/L        | 0.77       | and and   | 0.19       |           | LAG LINA  | 0.77      | 0.77      |
| Methane               | ppm         | 2800       | 0         | 320        | 15        | 165       | 0         | 0         |
| ORP                   | mV          | -193.4     | 108.9     | -116       | -123.1    | -171      | -108.5    | -99.9     |
| рН                    |             | 7.09       | 6.8       | 6.38       | 6.46      | 6.47      | 6.22      | 6.42      |
| Specific Conductivity | μS/cm       | 1446       | 1414      | 1842       | 2216      | 2106      | 2116      | 2067      |
| Temperature           | (°C)        | 23.6       | 21.4      | 22         | 21.8      | 21.4      | 20.6      | 21.5      |
| Turbidity             | NTU         | 1          | 2.7       | 59.84      | 22.35     | 15.5      | 0.71      | 1.03      |
| Field Notes           |             |            |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

μS/cm = Microsiemens per centimeter

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S141A     | S143A     | S143A      | S143A     | S143A     | S143A     | S143A     |
|-----------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/9/2021 | 9/15/2020 | 12/16/2020 | 1/19/2021 | 2/15/2021 | 5/17/2021 | 8/17/2021 |
| TIME                  |             | 12:30     | 7:10      | 8:53       | 10:45     | 8:13      | 7:30      | 10:21     |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.65      | 0.7       | 0.25       | 0.33      | 1.32      | 2.7       | 0.72      |
| Ferrous Iron          | mg/L        | 2.5       | 0         | 3          | 5         | 4         | 4         | 3.5       |
| Groundwater level     | ft-bgs      | 14.38     | 13.03     | 12.99      | 12.96     | 12.56     | 12.56     | 12.98     |
| Manganese             | mg/L        | 0.77      |           | 0.77       |           | 100 100   | 0.77      | 0.77      |
| Methane               | ppm         | 240       | 0         | 105        | 1700      | 15000     | 0         | 2900      |
| ORP                   | mV          | -70.7     | 120.9     | -182.1     | -184.9    | -145.6    | -135.7    | -118.1    |
| рН                    |             | 6.49      | 6.99      | 6.44       | 6.53      | 6.56      | 6.58      | 6.51      |
| Specific Conductivity | μS/cm       | 1869      | 1290      | 1779       | 1743      | 1666      | 1357      | 1499      |
| Temperature           | (°C)        | 23.5      | 22        | 22.1       | 21.9      | 21        | 20.4      | 24.2      |
| Turbidity             | NTU         | 0.8       | 5.5       | 289.5      | 253.98    | 227.9     | 2.1       | 0.44      |
| Field Notes           |             |           |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S143A     | S146A     | S146A      | S146A     | S146A     | S146A     | S146A     |
|-----------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/8/2021 | 9/16/2020 | 12/17/2020 | 1/20/2021 | 2/16/2021 | 5/19/2021 | 8/19/2021 |
| TIME                  |             | 10:05     | 8:35      | 10:28      | 8:05      | 11:58     | 10:05     | 8:55      |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.6       | 0.3       | 0.15       | 0.27      | 1.19      | 1.97      | 0.61      |
| Ferrous Iron          | mg/L        | 2         | 0.5       | 1          | 0.5       | 2.5       | 0.5       | 1.5       |
| Groundwater level     | ft-bgs      | 12.77     | 12.64     | 12.32      | 12.45     | 11.98     |           | 12.45     |
| Manganese             | mg/L        | 0.77      |           | 0.77       |           | 100 100   | 0.77      | 0.77      |
| Methane               | ppm         | 85        | 190       | 470        | 540       | 1250      | 0         | 115       |
| ORP                   | mV          | -97.1     | -51.4     | -308.9     | -319.3    | -299.4    | -317.8    | -160.4    |
| рН                    |             | 6.67      | 7.12      | 6.48       | 6.97      | 7.01      | 7.17      | 7.11      |
| Specific Conductivity | μS/cm       | 1421      | 1080      | 920        | 1037      | 1002      | 953       | 1078      |
| Temperature           | (°C)        | 24        | 21.4      | 21         | 19.8      | 21.6      | 21.8      | 22.5      |
| Turbidity             | NTU         | 1.2       | 57.6      | 1323.2     | 68.21     | 19.3      | 1.97      | 5.4       |
| Field Notes           |             |           |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S146A      | S158A     | S158A      | S158A     | S158A     | S158A     | S158A     |
|-----------------------|-------------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/10/2021 | 9/14/2020 | 12/17/2020 | 1/20/2021 | 2/17/2021 | 5/18/2021 | 8/18/2021 |
| TIME                  |             | 10:27      | 10:51     | 11:53      | 10:28     | 12:12     | 11:09     | 12:29     |
| PARAMETER             | Result Unit | Result     | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.69       | 0.3       | 0.15       | 0.27      | 1.38      | 2.01      | 0.69      |
| Ferrous Iron          | mg/L        | 1.5        | 0         | 3          | 4         | 5         | 7         | 5.5       |
| Groundwater level     | ft-bgs      | 12.3       | 12.82     | 12.41      | 12.56     | 12.1      | 12.11     | 12.6      |
| Manganese             | mg/L        | 0.77       |           | 0.77       |           | 100 100   | 0.77      | 0.77      |
| Methane               | ppm         | 0          | 0         | 400        | 15        | 0         | 0         | 13250     |
| ORP                   | mV          | -139.8     | -46.7     | -261.1     | -220.6    | -183.7    | -146.5    | -104      |
| рН                    |             | 7.2        | 6.89      | 6.31       | 6.5       | 6.54      | 6.47      | 6.26      |
| Specific Conductivity | μS/cm       | 1041       | 1412      | 1612       | 2058      | 2020      | 2124      | 2689      |
| Temperature           | (°C)        | 22.9       | 22        | 21.9       | 21.9      | 21.3      | 21.3      | 24.3      |
| Turbidity             | NTU         | 1.5        | 89        | 1502.1     | 193.87    | 189.6     | 6.02      | 12.37     |
| Field Notes           |             |            |           |            |           |           |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



| WELL ID               |             | S158A     | S159A     | S159A      | S159A                             | S159A         | S159A     | S159A     |
|-----------------------|-------------|-----------|-----------|------------|-----------------------------------|---------------|-----------|-----------|
| DATE                  |             | 11/9/2021 | 9/15/2020 | 12/15/2020 | 1/19/2021                         | 2/15/2021     | 5/17/2021 | 8/17/2021 |
| TIME                  |             | 7:34      | 10:20     | 12:12      | 8:15                              | 12:34         | 11:20     | 9:04      |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result                            | Result        | Result    | Result    |
| DO                    | mg/L        | 0.66      | 0.3       | 0.38       | 0.34                              | 1.24          | 2.43      | 0.6       |
| Ferrous Iron          | mg/L        | 2         | 0         | 4.5        | 2.5                               | 3             | 3.5       | 4         |
| Groundwater level     | ft-bgs      | 12.39     | 13.9      | 13.57      | 13.61                             | 13.19         | 13.56     | 13.76     |
| Manganese             | mg/L        | 0.77      | nan san   | 0.77       | and the                           | MAGE NAME     | 0.77      | 0.77      |
| Methane               | ppm         | 0         | 15        | 230        | 4300                              |               | 50250     | 50250     |
| ORP                   | mV          | -114.9    | -6.6      | -142.1     | -95.1                             | -67.8         | -126.1    | -113.1    |
| рН                    |             | 6.44      | 7.07      | 5.9        | 5.99                              | 6.18          | 6.56      | 6.63      |
| Specific Conductivity | μS/cm       | 2555      | 1514      | 2340       | 2408                              | 2750          | 2467      | 2927      |
| Temperature           | (°C)        | 22.9      | 22.1      | 22.2       | 20.9                              | 21.6          | 22        | 23.5      |
| Turbidity             | NTU         | 4.4       | 30.2      | 800        | 474.43                            | 795.9         | 14.57     | 7.79      |
| Field Notes           |             |           |           |            | Turbidity would<br>not stabilize. | Meter maximum |           |           |

#### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential



## TABLE 4 FIELD PARAMETERS EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| WELL ID               |             | S159A     | S160A     | S160A      | S160A     | S160A     | S160A     | S160A     |
|-----------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| DATE                  |             | 11/8/2021 | 9/15/2020 | 12/16/2020 | 1/19/2021 | 2/16/2021 | 5/18/2021 | 8/18/2021 |
| TIME                  |             | 9:51      | 12:40     | 11:14      | 9:30      | 9:42      | 10:50     | 10:10     |
| PARAMETER             | Result Unit | Result    | Result    | Result     | Result    | Result    | Result    | Result    |
| DO                    | mg/L        | 0.84      | 0.3       | 0.4        | 0.43      | 1.37      | 2.36      | 0.75      |
| Ferrous Iron          | mg/L        | 1         | 0         | 4          | 4         | 3         | 2.5       | 4         |
| Groundwater level     | ft-bgs      | 13.61     | 14.54     | 14.29      | 14.64     | 14.21     | 14.29     | 14.85     |
| Manganese             | mg/L        | 0.77      |           | 0.77       |           | LAG LINA  | 0.77      | 0.77      |
| Methane               | ppm         | 50250     | 120       | 600        | 0         | 870       | 0         | 0         |
| ORP                   | mV          | -103.9    | 52.7      | -156.1     | -137.2    | -148.8    | -130.8    | -100.7    |
| рН                    |             | 6.78      | 6.82      | 6.55       | 6.57      | 6.54      | 6.49      | 6.47      |
| Specific Conductivity | μS/cm       | 2499      | 1951      | 1602       | 1867      | 1884      | 1929      | 2102      |
| Temperature           | (°C)        | 21.2      | 22.3      | 21.4       | 21.5      | 20.9      | 21.4      | 23        |
| Turbidity             | NTU         | 10.2      | 11.2      | 12.94      | -2.57     | 137       | 1.31      | 0         |
| Field Notes           |             |           |           |            |           |           |           |           |

### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential

Ppm = Parts per million

## TABLE 4 FIELD PARAMETERS EAB PHASE II EVALUATION REPORT SIGNETICS SITE



| WELLID                |             | CLCOA     |
|-----------------------|-------------|-----------|
| WELL ID               |             | S160A     |
| DATE                  |             | 11/9/2021 |
| TIME                  |             | 11:45     |
| PARAMETER             | Result Unit | Result    |
| DO                    | mg/L        | 0.68      |
| Ferrous Iron          | mg/L        | 2.5       |
| Groundwater level     | ft-bgs      | 14.6      |
| Manganese             | mg/L        | 0.77      |
| Methane               | ppm         | 0         |
| ORP                   | mV          | -55.7     |
| рН                    |             | 6.55      |
| Specific Conductivity | μS/cm       | 2013      |
| Temperature           | (°C)        | 23        |
| Turbidity             | NTU         | 2.5       |
| Field Notes           |             |           |

### NOTES:

--- = an observation was not recorded

 $\mu S/cm = Microsiemens per centimeter$ 

DO = Dissolved oxygen

Ft-bgs = Ferrous Ironet below ground surface

Mg/L = Milligrams per liter

mV =Millivolts

NTU = Nephelometric Turbidity unit

ORP = Oxidation Reduction Potential

Ppm = Parts per million



## TABLE 5 POST-INJECTION GROUNDWATER MONITORING SCHEDULE EAB PHASE II EVALUATION REPORT SIGNETICS SITE

|         |           |                   | EUROFINS TEST AMERI | CA         |                   |               |          | PACE ANA | ALYTICAL        |         | MICROBIAL INSIGHTS |
|---------|-----------|-------------------|---------------------|------------|-------------------|---------------|----------|----------|-----------------|---------|--------------------|
| Well ID | EPA 8260B | EPA 200.7         | EPA 300.0           | SM 2320    | SM 4500-S2        | SM 5310C      | AM20GAX  | AM23G    | RSK-175         | RSK-175 | QuantArray-Chlor   |
|         | VOCs      | Dissolved Mn & As | Nitrate & Sulfate   | Alkalinity | Sulfide           | TOC           | Hydrogen | VFAs     | CO <sub>2</sub> | MEE     | Microbial DNA      |
|         |           |                   |                     | N.         | lanth 1: 15-18 D  | ecember 2020  |          |          |                 |         |                    |
| S025A   | x         |                   | x                   |            | х                 | x             |          |          |                 | х       |                    |
| S049A   | x         |                   | x                   | ×          | х                 | ×             | x        | ×        | ×               | х       |                    |
| S088A   | х         |                   | х                   |            | х                 | х             |          |          |                 | x       |                    |
| S134A   | x         |                   | x                   | ×          | х                 | х             | ×        | х        | х               | x       |                    |
| S137A   | x         |                   | x                   | ×          | x                 | х             | ×        | х        | х               | ×       |                    |
| S138A   | ×         |                   | x                   | ×          | x                 | х             | ×        | ×        | x               | х       |                    |
| S139A   | ×         |                   | x                   | ×          | х                 | x             | ×        | ×        | x               | x       |                    |
| S140A   | ×         |                   | Х                   | ×          | x                 | ×             | ×        | ×        | ×               | х       |                    |
| S141A   | x         |                   | x                   | ×          | x                 | х             | ×        | х        | х               | x       |                    |
| S143A   | ×         |                   | x                   | х          | ×                 | х             | ×        | ×        | x               | ×       |                    |
| S146A   | ×         |                   | ×                   | х          | ×                 | x             | ×        | ×        | ×               | ×       |                    |
| S158A   | ×         |                   | x                   | х          | x                 | x             | ×        | ×        | x               | ×       |                    |
| S159A   | ×         |                   | X                   | ×          | x                 | ×             | ×        | ×        | ×               | ×       |                    |
| S160A   | ×         |                   | X                   | ×          | x                 | ×             | ×        | ×        | ×               | ×       |                    |
|         |           |                   |                     |            | Month 2: 18-20 )  | lanuary 2021  |          |          |                 |         |                    |
| S049A   | ×         | x                 | x                   | ×          | x                 | ×             | ×        | x        | ×               | ×       |                    |
| S134A   | x         | х                 | X                   | ×          | x                 | х             | ×        | х        | x               | x       |                    |
| S137A   | ×         | x                 | x                   | ×          | x                 | x             | ×        | x        | x               | ×       |                    |
| S138A   | x         | x                 | x                   | ×          | x                 | x             | ×        | x        | ×               | ×       |                    |
| S139A   | x         | x                 | x                   | ×          | x                 | x             | ×        | x        | ×               | ×       |                    |
| S140A   | ×         | x                 | x                   | х          | x                 | ×             | ×        | x        | ×               | ×       |                    |
| S141A   | ×         | x                 | ×                   | ×          | x                 | x             | ×        | x        | ×               | ×       |                    |
| S143A   | ×         | x                 | ×                   | ×          | ×                 | ×             | ×        | ×        | ×               | ×       |                    |
| S146A   | x         | x                 | ×                   | ×          | ×                 | ×             | ×        | ×        | ×               | ×       |                    |
| S158A   | x         | x                 | x                   | ×          | x                 | ×             | ×        | ×        | ×               | ×       |                    |
| S159A   | ×         | x                 | x                   | ×          | x                 | ×             | ×        | ×        | ×               | ×       |                    |
| S160A   | X         | x                 | x                   | ×          | x                 | ×             | x        | x        | ×               | x       |                    |
|         |           |                   |                     | Q          | uarter 1, 15–17 i | February 2021 |          |          |                 |         |                    |
| S049A   | X         | X                 | X                   | х          | X                 | ×             | ×        | ×        | ×               | ×       | X                  |
| S134A   | X         | х                 | ×                   | х          | ×                 | ×             | ×        | x        | ×               | ×       | X                  |
| S137A   | X         | X                 | X                   | х          | x                 | x             | ×        | ×        | x               | ×       | X                  |
| S138A   | ×         | x                 | ×                   | ×          | ×                 | х             | ×        | ×        | х               | х       | x                  |



## TABLE 5 POST-INJECTION GROUNDWATER MONITORING SCHEDULE EAB PHASE II EVALUATION REPORT SIGNETICS SITE

|         |           |                   | EUROFINS TEST AMERI | CA         |                  |             |          | PACE AN | ALYTICAL        |         | MICROBIAL INSIGHTS |
|---------|-----------|-------------------|---------------------|------------|------------------|-------------|----------|---------|-----------------|---------|--------------------|
| Well ID | EPA 8260B | EPA 200.7         | EPA 300.0           | SM 2320    | SM 4500-S2       | SM 5310C    | AM20GAX  | AM23G   | RSK-175         | RSK-175 | QuantArray-Chlor   |
|         | VOCs      | Dissolved Mn & As | Nitrate & Sulfate   | Alkalinity | Sulfide          | TOC         | Hydrogen | VFAs    | CO <sub>2</sub> | MEE     | Microbial DNA      |
| S139A   | x         | X                 | X                   | ×          | Х                | ×           | х        | х       | ×               | х       | X                  |
| S140A   | x         | x                 | х                   | ×          | х                | х           | х        | х       | х               | x       | Х                  |
| S141A   | х         | x                 | x                   | ×          | x                | `           | х        | х       | x               | ×       | X                  |
| S143A   | x         | x                 | x                   | ×          | х                | х           | х        | х       | x               | x       | ×                  |
| S146A   | x         | х                 | x                   | ×          | х                | х           | х        | х       | x               | х       | Х                  |
| S158A   | X         | X                 | Х                   | x          | х                | ×           | х        | Х       | ×               | х       | ×                  |
| S159A   | X         | X                 | X                   | ×          | X                | ×           | х        | X       | ×               | x       | X                  |
| S160A   | х         | x                 | x                   | x          | ×                | ×           | ×        | х       | ×               | ×       | X                  |
|         |           | <u> </u>          |                     |            | Quarter 2: 17-1  | 9 May 2021  | 1        |         | -               |         | <u> </u>           |
| S025A   | х         | x                 | х                   |            | x                | х           |          |         |                 | ×       |                    |
| S049A   | х         | x                 | х                   | ×          | x                | х           | х        | х       | х               | ×       |                    |
| S088A   | x         | x                 | x                   |            | х                | х           |          |         |                 | x       |                    |
| S134A   | x         | х                 | х                   | ×          | х                | х           | х        | х       | x               | ×       |                    |
| S137A   | x         | x                 | X                   | ×          | x                | ×           | х        | x       | ×               | x       |                    |
| S138A   | X         | X                 | X                   | ×          | x                | ×           | х        | Х       | ×               | x       |                    |
| S139A   | Х         | х                 | X                   | ×          | x                | х           | х        | х       | ×               | х       |                    |
| S140A   | ×         | x                 | X                   | ×          | х                | х           | х        | x       | x               | ×       |                    |
| S141A   | ×         | x                 | X                   | ×          | x                | х           | х        | х       | ×               | ×       |                    |
| S143A   | x         | x                 | X                   | ×          | х                | х           | х        | х       | ×               | x       |                    |
| S146A   | x         | x                 | х                   | ×          | х                | х           | х        | х       | х               | х       |                    |
| S158A   | х         | x                 | x                   | ×          | x                | х           | ×        | х       | x               | ×       |                    |
| S159A   | X         | X                 | X                   | ×          | x                | х           | ×        | ×       | х               | ×       |                    |
| S160A   | x         | x                 | X                   | ×          | x                | х           | ×        | ×       | x               | ×       |                    |
|         |           |                   |                     | (          | Quarter 3: 17-19 | August 2021 |          |         |                 | -       |                    |
| S049A   | x         | x                 | x                   | ×          | х                | х           | ×        | x       | x               | ×       | X                  |
| S134A   | ×         | x                 | x                   | ×          | х                | х           | х        | х       | ×               | х       | X                  |
| S137A   | ×         | X                 | X                   | ×          | x                | x           | х        | х       | ×               | x       | X                  |
| S138A   | X         | X                 | X                   | ×          | х                | х           | х        | X       | ×               | х       | X                  |
| S139A   | ×         | X                 | ×                   | ×          | ×                | ×           | ×        | ×       | ×               | ×       | X                  |
| S140A   | ×         | x                 | ×                   | ×          | ×                | x           | ×        | ×       | ×               | ×       | X                  |
| S141A   | ×         | x                 | ×                   | x          | ×                | ×           | ×        | ×       | ×               | ×       | X                  |
| S143A   | ×         | X                 | ×                   | x          | ×                | ×           | х        | ×       | ×               | ×       | X                  |
| S146A   | x         | x                 | X                   | ×          | x                | ×           | ×        | ×       | ×               | x       | X                  |



## TABLE 5 POST-INJECTION GROUNDWATER MONITORING SCHEDULE EAB PHASE II EVALUATION REPORT SIGNETICS SITE

|         |           |                   | EUROFINS TEST AMERI | CA         |                  |              |          | PACE AN | ALYTICAL        |         | MICROBIAL INSIGHTS |
|---------|-----------|-------------------|---------------------|------------|------------------|--------------|----------|---------|-----------------|---------|--------------------|
| Well ID | EPA 8260B | EPA 200.7         | EPA 300.0           | SM 2320    | SM 4500-S2       | SM 5310C     | AM20GAX  | AM23G   | RSK-175         | RSK-175 | QuantArray-Chlor   |
|         | VOCs      | Dissolved Mn & As | Nitrate & Sulfate   | Alkalinity | Sulfide          | TOC          | Hydrogen | VFAs    | CO <sub>2</sub> | MEE     | Microbial DNA      |
| S158A   | ×         | Х                 | Х                   | Х          | Х                | ×            | X        | х       | ×               | х       | X                  |
| S159A   | x         | х                 | Х                   | х          | х                | х            | х        | х       | х               | х       | Х                  |
| S160A   | x         | Х                 | Х                   | х          | ×                | х            | ×        | х       | ×               | x       | X                  |
|         |           |                   |                     | Q          | uarter 4: 8-10 N | ovember 2021 |          |         |                 |         |                    |
| S025A   | x         | х                 | Х                   |            | X                | х            |          |         |                 | x       |                    |
| S049A   | x         | X                 | X                   | ×          | X                | х            | x        | х       | х               | ×       | X                  |
| S088A   | ×         | х                 | Х                   |            | х                | х            |          |         |                 | х       |                    |
| S134A   | ×         | Х                 | х                   | х          | х                | x            | x        | ×       | ×               | ×       | X                  |
| S137A   | ×         | X                 | Х                   | ×          | x                | ×            | x        | ×       | ×               | ×       | X                  |
| S138A   | x         | х                 | X                   | ×          | x                | х            | ×        | x       | ×               | ×       | X                  |
| S139A   | x         | х                 | Х                   | ×          | ×                | х            | ×        | x       | x               | ×       | X                  |
| S140A   | ×         | x                 | x                   | x          | x                | x            | ×        | ×       | ×               | ×       | X                  |
| S141A   | x         | х                 | х                   | ×          | x                | x            | ×        | x       | ×               | ×       | X                  |
| S143A   | ×         | X                 | X                   | ×          | X                | ×            | x        | x       | ×               | ×       | X                  |
| S146A   | ×         | Х                 | Х                   | х          | X                | х            | x        | ×       | ×               | ×       | X                  |
| S158A   | x         | Х                 | X                   | х          | ×                | x            | ×        | x       | ×               | ×       | X                  |
| S159A   | ×         | X                 | X                   | х          | ×                | х            | ×        | ×       | х               | ×       | X                  |
| S160A   | ×         | х                 | X                   | х          | ×                | х            | ×        | ×       | х               | ×       | X                  |



| Location ID Sample Date                                                                 |                                              | S025A<br>9/14/20       | S025A<br>12/15/20      | S025A<br>5/18/21                  | S025A<br>5/18/21                   | S025A<br>11/8/21               | 9/15/20                            | S049A<br>12/16/20                | S049A<br>1/18/21                 | S049A<br>2/16/21                    | 5/18/21                          | 5/18/21                           | 8/18/21                            | S049A<br>11/9/21               |
|-----------------------------------------------------------------------------------------|----------------------------------------------|------------------------|------------------------|-----------------------------------|------------------------------------|--------------------------------|------------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| Sample Purpose Analysis Type                                                            |                                              | REG                    | REG<br>INIT            | REG                               | REG<br>REANL                       | REG<br>INIT                    | REG<br>INIT                        | REG<br>INIT                      | REG                              | REG<br>INIT                         | REG<br>INIT                      | REG<br>REANL                      | REG                                | REG                            |
| Parameter                                                                               | Result Unit                                  | Result                 | Result                 | Result                            | Result                             | Result                         | Result                             | Result                           | Result                           | Result                              | Result                           | Result                            | Result                             | Result                         |
| 1,1,1,2-Tetrachloroethane                                                               | µg/L                                         | ND 5                   | ND 5                   | ND 2<br>4.4 J                     | ND 0.5 H<br>4.7 H                  | ND 1 *+<br>3.9 J               | ND 10<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10                   | ND 2<br>ND 2                        | ND 2<br>ND 3.4                   | ND 1 H<br>ND 1.7 H                | ND 2<br>ND 3.4                     | ND 1 *+                        |
| 1,1,2-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane             | μg/L<br>μg/L<br>μg/L                         | ND 5                   | ND 5<br>ND 5           | ND 2<br>ND 2.2                    | ND 0.5 H<br>ND 0.55 H              | ND 1<br>ND 1.1                 | ND 10<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10<br>ND 10          | ND 2.2<br>ND 2.4                    | ND 3.4<br>ND 2<br>ND 2.2         | ND 1.7 H<br>ND 1 H<br>ND 1.1 H    | ND 3.4<br>ND 2<br>ND 2.2           | ND 1.1                         |
| 1,1,2-Trichlorotrifluoroethane (CFC 113)<br>1,1-Dichloroethane (1,1-DCA)                | μg/L<br>μg/L                                 | ND 5<br>ND 5           | ND 5<br>ND 5           | ND 2.4<br>3.6 J                   | ND 0.6 H<br>3.9 H                  | ND 1.2<br>2.5 J                | ND 10<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10                   | ND 3.4<br>4.3 J                     | ND 2.4<br>6.9 J                  | ND 1.2 H<br>4.7 J,H               | ND 2.4<br>3.2 J                    | ND 1.2<br>2.6 J                |
| 1,1-Dichloroethene (1,1-DCE) 1,1-Dichloropropene 1,2,3-Trichlorobenzene                 | μg/L<br>μg/L<br>μg/L                         | ND 5<br>ND 10<br>ND 10 | ND 5<br>ND 5<br>ND 10  | ND 2.6<br>ND 2.4<br>ND 8          | ND 0.65 H<br>ND 0.6 H<br>ND 2 H    | ND 1.3<br>ND 1.2<br>ND 4       | ND 10<br>ND 10<br>ND 20            | ND 5<br>ND 5<br>ND 10            | ND 10<br>ND 10<br>ND 20          | ND 2.6<br>ND 2.4<br>ND 8            | ND 2.6<br>ND 2.4<br>ND 8         | 1.6 J,H<br>ND 1.2 H<br>ND 4 H     | ND 2.6<br>ND 2.4<br>ND 8           | 1.5 J<br>ND 1.2<br>ND 4        |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene                                        | μg/L<br>μg/L                                 | ND 10<br>ND 10         | ND 10<br>ND 10         | ND 2.6<br>ND 5                    | ND 0.65 H<br>ND 1.3 H              | ND 1.3<br>ND 2.5               | ND 20<br>ND 20                     | ND 10<br>ND 10                   | ND 20<br>ND 20                   | ND 2.6<br>ND 5                      | ND 2.6<br>ND 5                   | ND 1.3 H<br>ND 2.5 H              | ND 2.6<br>ND 5                     | ND 1.3<br>ND 2.5               |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane (DBCP)<br>1,2-Dibromoethane (EDB) | μg/L<br>μg/L<br>μg/L                         | ND 10<br>ND 5<br>ND 5  | ND 10<br>ND 10<br>ND 5 | ND 6.4<br>ND 4<br>ND 2.4          | ND 1.6 H<br>ND 1 H<br>ND 0.6 H     | ND 3.2<br>ND 2<br>ND 1.2       | ND 20<br>ND 20<br>ND 10            | ND 10<br>ND 10<br>ND 5           | ND 20<br>ND 20<br>ND 10          | ND 6.4<br>ND 4<br>ND 2.4            | ND 6.4<br>ND 4<br>ND 2.4         | ND 3.2 H<br>ND 2 H<br>ND 1.2 H    | ND 6.4<br>ND 4<br>ND 2.4           | ND 3.2<br>ND 2<br>ND 1.2       |
| 1,2-Dichlorobenzene 1,2-Dichloroethane                                                  | μg/L<br>μg/L                                 | ND 5                   | ND 5<br>ND 5           | ND 1.9<br>ND 2.8                  | ND 0.49 H<br>ND 0.7 H              | ND 0.97<br>ND 1.4              | ND 10<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10                   | ND 1.9<br>ND 2.8                    | ND 1.9<br>ND 2.8                 | ND 0.97 H<br>ND 1.4 H             | ND 1.9<br>ND 2.8                   | ND 0.97<br>ND 1.4              |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                          | μg/L<br>μg/L<br>μg/L                         | ND 5<br>ND 5<br>ND 10  | ND 5<br>ND 5<br>ND 5   | ND 3<br>ND 3.2<br>ND 1.7          | ND 0.75 H<br>ND 0.8 H<br>ND 0.43 H | ND 1.5<br>ND 1.6<br>ND 0.86    | ND 10<br>ND 10<br>ND 10            | ND 5<br>ND 5<br>ND 5             | ND 10<br>ND 10<br>ND 10          | ND 3<br>ND 3.2<br>ND 1.7            | ND 3<br>ND 3.2<br>ND 1.7         | ND 1.5 H<br>ND 1.6 H<br>ND 0.86 H | ND 3<br>ND 3.2<br>ND 1.7           | ND 1.5<br>ND 1.6<br>ND 0.86    |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene                                              | μg/L<br>μg/L                                 | ND 5<br>ND 10          | ND 10<br>ND 5          | ND 1.7<br>ND 2<br>ND 1.7          | ND 0.43 H<br>ND 0.42 H             | ND 1<br>ND 0.83                | ND 20<br>ND 10                     | ND 10<br>ND 5                    | ND 20<br>ND 10                   | ND 2<br>ND 1.7                      | ND 1.7<br>ND 2<br>ND 1.7         | ND 1 H<br>ND 0.83 H               | ND 2<br>ND 1.7                     | ND 1<br>ND 0.83                |
| 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene                                    | μg/L<br>μg/L                                 | ND 20<br>ND 5<br>ND 20 | ND 10<br>ND 20<br>ND 5 | ND 9.2<br>ND 6.6<br>ND 2.2        | ND 2.3 H<br>ND 1.7 H<br>ND 0.55 H  | ND 4.6<br>ND 3.3<br>ND 1.1     | ND 20<br>1000<br>ND 40             | ND 10<br>ND 20<br>ND 5           | ND 20<br>ND 40<br>ND 10          | ND 9.2<br>ND 6.6<br>ND 2.2          | ND 9.2<br>ND 6.6<br>ND 2.2       | ND 4.6 H<br>ND 3.3 H<br>ND 1.1 H  | ND 9.2<br>ND 6.6<br>ND 2.2         | ND 4.6<br>ND 3.3<br>ND 1.1     |
| 2-Hexanone 4-Chlorotoluene                                                              | μg/L<br>μg/L<br>μg/L                         | ND 5<br>ND 10          | ND 20<br>ND 5          | ND 3.4<br>ND 2                    | ND 0.85 H<br>ND 0.5 H              | ND 1.7<br>ND 1                 | ND 10<br>ND 40                     | ND 20<br>ND 5                    | ND 40<br>ND 10                   | ND 3.4<br>ND 2                      | ND 3.4<br>ND 2                   | ND 1.7 H<br>ND 1 H                | ND 3.4<br>ND 2                     | ND 1.7<br>ND 1                 |
| 4-Isopropyltoluene<br>Acetone                                                           | μg/L<br>μg/L                                 | ND 100<br>ND 5         | ND 100                 | ND 3<br>ND 76                     | ND 0.75 H<br>ND 19 H               | ND 1.5<br>ND 38<br>ND 0.8      | ND 10<br>ND 20<br>ND 200           | ND 10<br>ND 100                  | ND 20<br>ND 200                  | ND 3<br>ND 76                       | ND 3<br>ND 76                    | ND 1.5 H<br>ND 38 H               | ND 3<br>ND 76                      | ND 1.5<br>ND 38                |
| Bromobenzene Bromochloromethane                                                         | μg/L<br>μg/L<br>μg/L                         | ND 10<br>ND 10<br>ND 5 | ND 5<br>ND 10<br>ND 10 | ND 1.6<br>ND 1.8<br>ND 3.6        | ND 0.4 H<br>ND 0.46 H<br>ND 0.9 H  | ND 0.8<br>ND 0.91<br>ND 1.8    | ND 10<br>ND 20                     | ND 5<br>ND 10<br>ND 10           | ND 10<br>ND 20<br>ND 20          | ND 1.6<br>ND 1.8<br>ND 3.6          | ND 1.6<br>ND 1.8<br>ND 3.6       | ND 0.8 H<br>ND 0.91 H<br>ND 1.8 H | ND 1.6<br>ND 1.8<br>ND 3.6         | ND 0.8<br>ND 0.91<br>ND 1.8    |
| Bromodichloromethane<br>Bromoform                                                       | μg/L<br>μg/L                                 | ND 10<br>ND 10         | ND 5<br>ND 10          | ND 2.8<br>ND 3.8                  | ND 0.7 H<br>ND 0.95 H              | ND 1.4<br>ND 1.9 *+            | ND 20<br>ND 10                     | ND 5<br>ND 10                    | ND 10<br>ND 20                   | ND 2.8<br>ND 3.8 *+                 | ND 2.8<br>ND 3.8                 | ND 1.4 H<br>ND 1.9 H              | ND 2.8<br>ND 3.8                   | ND 1.4<br>ND 1.9 *+            |
| Bromomethane Carbon Disulfide Carbon Tetrachloride                                      | μg/L<br>μg/L<br>μg/L                         | ND 20<br>ND 5<br>ND 5  | ND 10<br>ND 20<br>ND 5 | ND 4.2<br>ND 7.2<br>ND 2.4        | ND 1.1 H<br>ND 1.8 H<br>ND 0.6 H   | ND 2.1<br>3.7 J,8<br>ND 1.2 *+ | ND 20<br>ND 20<br>ND 40            | ND 10<br>ND 20<br>ND 5           | ND 20<br>ND 40<br>ND 10          | ND 4.2<br>ND 7.2<br>ND 2.4          | ND 4.2<br>ND 7.2<br>ND 2.4       | ND 2.1 H<br>ND 3.6 H<br>ND 1.2 H  | ND 4.2<br>ND 7.2<br>ND 2.4         | ND 2.1<br>ND 3.6<br>ND 1.2 *+  |
| Chlorobenzene<br>Chloroethane                                                           | μg/L<br>μg/L                                 | ND 10<br>ND 10         | ND 5<br>ND 10          | ND 1.4<br>ND 4.8                  | ND 0.35 H<br>ND 1.2 H              | ND 0.7<br>ND 2.4               | ND 10<br>ND 10                     | ND 5<br>ND 10                    | ND 10<br>ND 20                   | ND 1.4<br>ND 4.8                    | ND 1.4<br>ND 4.8                 | ND 0.7 H<br>ND 2.4 H              | ND 1.4<br>ND 4.8                   | ND 0.7<br>ND 2.4               |
| Chloroform Chloromethane cis-1,2-Dichloroethene                                         | μg/L<br>μg/L<br>μg/L                         | ND 10<br>ND 5<br>ND 5  | ND 10<br>ND 10<br>460  | ND 2.4<br>ND 5.2<br>680           | ND 0.6 H<br>ND 1.3 H               | ND 1.2<br>ND 2.6<br>550        | ND 20<br>ND 20<br>110              | ND 10<br>ND 10<br>370            | ND 20<br>ND 20<br>680            | ND 2.4<br>ND 5.2<br>1000            | ND 2.4<br>ND 5.2<br>1500         | ND 1.2 H<br>ND 2.6 H              | ND 2.4<br>ND 5.2<br>590            | ND 1.2<br>ND 2.6<br>730        |
| cis-1,3-Dichloropropene<br>Dibromochloromethane                                         | μg/L<br>μg/L                                 | ND 5<br>ND 10          | ND 5<br>ND 5           | ND 3<br>ND 3.2                    | ND 0.75 H<br>ND 0.8 H              | ND 1.5<br>ND 1.6               | ND 20<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10                   | ND 3<br>ND 3.2                      | ND 3<br>ND 3.2                   | ND 1.5 H<br>ND 1.6 H              | ND 3<br>ND 3.2                     | ND 1.5<br>ND 1.6               |
| Dibromomethane Dichlorodifluoromethane (CFC 12) Ethylbenzene                            | μg/L<br>μg/L                                 | ND 5<br>ND 5<br>ND 20  | ND 5<br>ND 10<br>ND 5  | ND 3.4<br>ND 6.4<br>ND 1.7        | ND 0.85 H<br>2.3 J,H<br>ND 0.42 H  | ND 1.7<br>ND 3.2<br>ND 0.84    | ND 10<br>ND 10<br>ND 20            | ND 5<br>ND 10<br>ND 5            | ND 10<br>ND 20<br>ND 10          | ND 3.4<br>ND 6.4<br>ND 1.7          | ND 3.4<br>ND 6.4<br>ND 1.7       | ND 1.7 H<br>ND 3.2 H<br>ND 0.84 H | ND 3.4<br>ND 6.4<br>ND 1.7         | ND 1.7<br>ND 3.2<br>ND 0.84    |
| Hexachlorobutadiene<br>Isopropylbenzene                                                 | μg/L<br>μg/L<br>μg/L                         | ND 10<br>ND 5          | ND 10<br>ND 5          | ND 4.6<br>ND 2.2                  | ND 1.2 H<br>ND 0.55 H              | ND 2.3 *+<br>ND 1.1            | ND 10<br>ND 20                     | ND 10<br>ND 5                    | ND 20<br>ND 10                   | ND 4.6 *+<br>ND 2.2                 | ND 4.6<br>ND 2.2                 | ND 2.3 H<br>ND 1.1 H              | ND 4.6<br>ND 2.2                   | ND 0.84<br>ND 2.3 *+<br>ND 1.1 |
| Methyl Isobutyl Ketone<br>Methylene Chloride                                            | μg/L<br>μg/L                                 | ND 10<br>ND 10         | ND 20<br>ND 10         | ND 2.2<br>ND 3.2                  | ND 0.55 H<br>1.2 J,H,B             | ND 1.1<br>ND 1.6               | ND 10<br>ND 40                     | ND 20<br>ND 10                   | ND 40<br>ND 20                   | ND 2.2<br>ND 3.2                    | ND 2.2<br>4.3 J                  | ND 1.1 H<br>3 J,H,B               | ND 2.2<br>ND 3.2                   | ND 1.1<br>ND 1.6               |
| MT8E Naphthalene n-Butylbenzene                                                         | μg/L<br>μg/L<br>μg/L                         | ND 10<br>ND 10<br>ND 5 | ND 5<br>ND 10<br>ND 10 | ND 2.4<br>ND 9.6<br>ND 3.6        | ND 0.6 H<br>ND 2.4 H<br>ND 0.9 H   | ND 1.2<br>ND 4.8<br>ND 1.8     | ND 20<br>ND 10<br>63               | ND 5<br>ND 10<br>ND 10           | ND 10<br>ND 20<br>ND 20          | ND 2.4<br>ND 9.6<br>ND 3.6          | ND 2.4<br>ND 9.6<br>ND 3.6       | ND 1.2 H<br>ND 4.8 H<br>ND 1.8 H  | ND 2.4<br>ND 9.6<br>ND 3.6         | ND 1.2<br>ND 4.8<br>ND 1.8     |
| n-Propylbenzene<br>sec-Butylbenzene                                                     | μg/L<br>μg/L                                 | ND 10<br>ND 5          | ND 10<br>ND 10         | ND 2.2<br>ND 2.8                  | ND 0.55 H<br>ND 0.7 H              | ND 1.1<br>ND 1.4               | ND 20<br>ND 20                     | ND 10<br>ND 10                   | ND 20<br>ND 20                   | ND 2.2<br>ND 2.8                    | ND 2.2<br>ND 2.8                 | ND 1.1 H<br>ND 1.4 H              | ND 2.2<br>ND 2.8                   | ND 1.1<br>ND 1.4               |
| Styrene tert-Butylbenzene Tetrachloroethene (PCE)                                       | μg/L<br>μg/L<br>μg/L                         | ND 5<br>ND 5<br>ND 10  | ND 5<br>ND 10<br>ND 5  | ND 2.6<br>ND 2.6<br>ND 2          | ND 0.65 H<br>ND 0.65 H<br>ND 0.5 H | ND 1.3<br>ND 1.3<br>ND 1       | ND 20<br>ND 20<br>ND 10            | ND 5<br>ND 10<br>ND 5            | ND 10<br>ND 20<br>ND 10          | ND 2.6<br>ND 2.6<br>ND 2            | ND 2.6<br>ND 2.6<br>ND 2         | ND 1.3 H<br>ND 1.3 H<br>ND 1 H    | ND 2.6<br>ND 2.6<br>ND 2           | ND 1.3<br>ND 1.3<br>ND 1       |
| Toluene<br>trans-1,2-Dichloroethene                                                     | μg/L<br>μg/L                                 | ND 20<br>ND 5          | ND 5                   | ND 1.9<br>3.9 J                   | ND 0.48 H<br>5.9 H                 | ND 0.95<br>5.7                 | ND 20<br>ND 10                     | ND 5<br>ND 5                     | ND 10<br>ND 10                   | ND 1.9<br>3.5 J                     | ND 1.9                           | ND 0.95 H<br>7.1 H                | ND 1.9<br>5.5 J                    | ND 0.95<br>6.5                 |
| trans=1,3=Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11)         | μg/L<br>μg/L                                 | ND 5<br>ND 5<br>ND 5   | ND 5<br>60<br>ND 10    | ND 3.2<br>36<br>ND 2.6            | ND 0.8 H<br>38 H<br>ND 0.65 H      | ND 1.6<br>26<br>ND 1.3         | ND 10<br>ND 10<br>ND 10            | ND 5<br>44<br>ND 10              | ND 10<br>19<br>ND 20             | ND 3.2<br>18<br>ND 2.6              | ND 3.2<br>11<br>ND 2.6           | ND 1.6 H<br>7 H<br>ND 1.3 H       | ND 3.2<br>13<br>ND 2.6             | ND 1.6<br>20<br>ND 1.3         |
| Vinyl Acetate Vinyl Chloride                                                            | μg/L<br>μg/L<br>μg/L                         | ND 5                   | ND 20<br>190           | ND 3.8                            | ND 0.95 H<br>21 H                  | ND 1.9<br>300                  | ND 20<br>ND 40                     | ND 20<br>69                      | ND 40<br>53                      | ND 3.8<br>64                        | ND 3.8<br>150                    | ND 1.9 H<br>90 H                  | ND 3.8<br>42                       | ND 1.9<br>43                   |
| Xylenes, Total                                                                          | μg/L                                         | ND 5                   | ND 5                   | ND 5.4                            | ND 1.4 H                           | ND 2.7<br>AL ORGANIC C         | ND 10<br>ARBON                     | ND 5                             | ND 10                            | ND 5.4                              | ND 5.4                           | ND 2.7 H                          | ND 5.4                             | ND 2.7                         |
| Total Organic Carbon                                                                    | mg/L                                         | 1.9                    | 2.4                    | 1.7                               | SM 4500S                           | 1.4<br>P-D = SULFIDE           | 1.7                                | 2.7                              | 2.7                              | 2                                   | 2.7                              |                                   | 2.4                                | 2.6                            |
| Sulfide                                                                                 | mg/L                                         | ND 0.1                 | 0.18                   | ND 0.022                          | SM 23208                           | ND 0.022<br>- ALKALINITY       | ND 0.1                             | ND 0.05 F1,F2                    | ND 0.05 ^1+                      | 0.19                                | 0.12 F1,F2                       |                                   | ND 0.022                           | 0.026 J                        |
| Bicarbonate Alkalinity  Carbonate Hydroxide  Hydroxide Alkalinity                       | mg/L<br>mg/L<br>mg/L                         |                        |                        |                                   |                                    |                                | 440<br>ND 5<br>ND 5                | 490<br>ND 5<br>ND 5              | 650<br>ND 5<br>ND 5              | 660<br>ND 5<br>ND 5                 | 700<br>ND 5<br>ND 5              |                                   | 790<br>ND 5<br>ND 5                | 790<br>ND 5<br>ND 5            |
| Total Alkalinity                                                                        | mg/L                                         |                        |                        | <i>E</i>                          | PA 300.0 - NIT                     | RATE AND SUL                   | 440                                | 490                              | 650                              | 660                                 | 700                              |                                   | 790                                | 790                            |
| Nitrate<br>Sulfate                                                                      | mg/L<br>mg/L                                 | ND 1.3<br>240          | ND 1.3<br>220          | ND 0.5<br>210                     |                                    | ND 0.5<br>180                  | ND 1.3<br>200                      | ND 1.3<br>180                    | ND 1.3<br>150                    | ND 0.88<br>150                      | ND 0.5<br>130                    |                                   | ND 0.5<br>76                       | ND 0.5                         |
| Arsenic                                                                                 | µg/L                                         |                        |                        | ND 4.4                            | 200.7 - ARSE                       | ND 19 H                        |                                    |                                  | ND 15                            | 12 J                                | 4.5 J                            |                                   | ND 4.4                             | ND 19 H                        |
| Manganese  Hydrogen                                                                     | μg/L<br>nM                                   |                        |                        | 28                                | AM20GAX                            | 180 H<br>- HYDROGEN            | 1.6]                               | ND 0.49                          | 2.1 J                            | 520<br>ND 0.49                      | 760                              |                                   | 670 B                              | 390 H                          |
| 4-Methylpentanoic Acid                                                                  | mg/L                                         |                        | I                      |                                   | AM23G - VOL                        | THE FATTY AC                   | <u> </u>                           | ND 0.49                          | ND 0.056                         | ND 0.056                            | ND 0.056                         |                                   | ND 0.56                            | ND 0.56                        |
| Acetic Acid Butyric Acid                                                                | mg/L<br>mg/L                                 |                        |                        |                                   |                                    |                                | 0.41 J<br>ND 0.058                 | 0.18 J<br>ND 0.058               | 0.18 J<br>ND 0.058               | 0.38 J<br>ND 0.058                  | 0.2 J<br>ND 0.058                |                                   | 4.2 J<br>ND 0.58                   | 2.3 J<br>ND 0.58               |
| Formic Acid i-Hexanoic Acid                                                             | mg/L<br>mg/L                                 |                        |                        |                                   |                                    |                                | 5.6<br>0.098 J                     | 0.45 J<br>ND 0.056               | 0.27 J<br>0.088 J                | 4.9<br>ND 0.058                     | 6.3<br>ND 0.058                  |                                   | 45<br>ND 0.58                      | 51<br>ND 0.58<br>ND 0.61       |
| Isopentanoic Acid Lactic Acid Pentanoic Acid                                            | mg/L<br>mg/L<br>mg/L                         |                        |                        |                                   |                                    |                                | ND 0.061<br>ND 0.053<br>ND 0.056   | ND 0.061<br>ND 0.053<br>ND 0.056 | ND 0.061<br>ND 0.053<br>ND 0.056 | ND 0.061<br>ND 0.053<br>ND 0.056    | ND 0.061<br>ND 0.053<br>ND 0.056 |                                   | ND 0.61<br>ND 0.53<br>ND 0.56      | 11<br>ND 0.56                  |
| Propionic Acid<br>Pyruvic Acid                                                          | mg/L<br>mg/L                                 |                        |                        |                                   |                                    |                                | 0.053 J<br>ND 0.06                 | ND 0.053<br>ND 0.06              | ND 0.053<br>ND 0.06              | ND 0.053<br>ND 0.06                 | ND 0.053<br>ND 0.06              |                                   | ND 0.53<br>ND 0.6                  | ND 0.53<br>ND 0.6              |
| Carbon Dioxide                                                                          | mg/L                                         |                        |                        |                                   |                                    | SSOLVED CASE                   | 32.8                               | 56.9                             | 74.5                             | 71.5                                | 78.2                             |                                   | 147                                | 155                            |
| Ethane Ethene Methane                                                                   | mg/L<br>mg/L<br>mg/L                         | 0.00054 J<br>0.016     | 0.0015<br>0.002        | ND 0,00017<br>ND 0,00024<br>0,007 |                                    | ND 0.00017<br>0.0012<br>0.022  | 0.00072 J<br>0.0023<br>0.45        | 0.00044 J<br>0.11                | 0.00064 J<br>0.0013<br>0.23      | 0.001<br>0.0017<br>0.34             | 0.00079 J<br>0.002<br>1.3        |                                   | 0.00057 J<br>0.0049<br>1.6         | 0.0011<br>0.0066<br>2.2        |
| APS                                                                                     | Cells/mL                                     |                        |                        |                                   | QuantArray-C                       | hior - MICROB                  | IAL<br>19600                       |                                  |                                  | 61500                               |                                  |                                   | 32700                              | 54600                          |
| BVC<br>CER                                                                              | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | < 0.5<br>762                       |                                  |                                  | <0.5<br>355                         |                                  |                                   | <0.5<br>71.4                       | <0.5<br>30.4                   |
| CFR DCA DCAR                                                                            | Cells/mL<br>Cells/mL<br>Cells/mL             |                        |                        |                                   |                                    |                                | < 4.5<br>< 4.5<br>< 4.5            |                                  |                                  | <4.6<br><4.6<br><4.6                |                                  |                                   | <4.6<br><4.6<br><4.6               | <4.7<br><4.7<br><4.7           |
| DCM<br>DCMA                                                                             | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | < 4.5<br>< 4.5                     |                                  |                                  | 51.5<br><4.6                        |                                  |                                   | 29<br><4.6                         | <4.7<br><4.7                   |
| DECO DHBt DHC                                                                           | Cells/mL<br>Cells/mL<br>Cells/mL             |                        |                        |                                   |                                    |                                | 1160<br>< 4.5<br>21.4              |                                  |                                  | 1770<br>6590<br>25.8                |                                  |                                   | 1810<br>12700<br>121               | 2590<br>8490<br>44.2           |
| DHG<br>DSB                                                                              | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | 33200<br>< 4.5                     |                                  |                                  | 15300<br>6680                       |                                  |                                   | 4910<br>8170                       | 5660<br>9620                   |
| DSM<br>EBAC                                                                             | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | < 4.5<br>2190000                   |                                  |                                  | 639<br>2060000                      |                                  |                                   | 218<br>2170000                     | 147<br>1290000                 |
| EtnC<br>EtnE                                                                            | Cells/mL<br>Cells/mL<br>Cells/mL             |                        |                        |                                   |                                    |                                | 185<br>444<br>< 4.5                |                                  |                                  | 147<br>210<br>1610                  |                                  |                                   | 30<br><4.6<br>16200                | 8<br>36.7<br>1030              |
| MGN                                                                                     |                                              |                        | <b></b>                |                                   |                                    |                                |                                    |                                  |                                  | <4.6                                |                                  |                                   | <4.6                               | <4.7                           |
| PCE-1<br>PCE-2                                                                          | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | < 4.5<br>150                       |                                  |                                  | 307                                 |                                  |                                   | 74.1                               | 91.9                           |
| PCE-1 PCE-2 PHE RDEG                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL             |                        | <del></del>            |                                   |                                    |                                | 150<br>292<br>440                  |                                  | <del> </del>                     | 307<br>1730<br>2480                 |                                  |                                   | 74.1<br>210<br><4.6                | 3170<br>3280                   |
| PCE-1<br>PCE-2<br>PHE                                                                   | Cells/mL<br>Cells/mL                         |                        |                        |                                   |                                    |                                | 150<br>292                         |                                  |                                  | 307<br>1730                         |                                  |                                   | 74.1<br>210                        | 3170                           |
| PCE-1 PCE-2 PHE RDEG RMO SMMO                                                           | Cells/mL Cells/mL Cells/mL Cells/mt Cells/mL |                        |                        |                                   |                                    |                                | 150<br>292<br>440<br>59.8<br>< 4.5 |                                  |                                  | 307<br>1730<br>2480<br>1980<br><4.6 |                                  |                                   | 74.1<br>210<br><4.6<br><4.6<br>176 | 3170<br>3280<br>289<br><4.7    |



| Location ID                                                                          |                                  | S088A                    | S088A                     | S088A                      | S088A                              | S088A                          | S134A                           | S134A                           | S134A                           | S134A                            | S134A                            | S134A                         | S134A                            | S137A                           |
|--------------------------------------------------------------------------------------|----------------------------------|--------------------------|---------------------------|----------------------------|------------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------|---------------------------------|
| Sample Date Sample Purpose                                                           |                                  | 9/14/20<br>REG           | 12/15/20<br>REG           | 5/18/21<br>REG             | 5/18/21<br>REG                     | 11/9/21<br>REG                 | 9/14/20<br>REG                  | 12/15/20<br>REG                 | 1/18/21<br>REG                  | 2/15/21<br>REG                   | 5/17/21<br>REG                   | 8/17/21<br>REG                | 11/8/21<br>REG                   | 9/15/20<br>REG                  |
| Analysis Type                                                                        | Dogula Unia                      | INIT                     | INIT                      | INIT                       | REANL                              | INIT                           | INIT                            | INIT                            | INIT                            | INIT                             | INIT                             | INIT                          | INIT                             | INIT                            |
| Parameter                                                                            | Result Unit                      | Result                   | Result                    | Result<br>EPA 82           | Result<br>1606 - VOLATIL           |                                | Result<br>MACHINIOS             | Result                          | Result                          | Result                           | Result                           | Result                        | Result                           | Result                          |
| 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane      | μg/L<br>μg/L                     | ND 5<br>ND 5<br>ND 5     | ND 10<br>ND 10<br>ND 10   | ND 2<br>ND 3.4<br>ND 2     | ND 0.5 H<br>ND 0.85 H<br>ND 0.5 H  | ND 1 *+<br>4.4 J<br>ND 1       | ND 2<br>ND 2<br>ND 2            | ND 0.5<br>ND 0.5<br>ND 0.5      | ND 2.5<br>ND 2.5<br>ND 2.5      | ND 0.4<br>ND 0.4<br>ND 0.44      | ND 0.4<br>ND 0.68<br>ND 0.4      | ND 0.4<br>ND 0.68<br>ND 0.4   | ND 0.4<br>ND 0.68<br>ND 0.4      | ND 5<br>ND 5<br>ND 5            |
| 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane (CFC 113) | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5             | ND 10<br>ND 10            | ND 2.2<br>ND 2.4           | ND 0.55 H<br>ND 0.6 H              | ND 1.1<br>ND 1.2               | ND 2<br>ND 2                    | ND 0.5<br>ND 0.5                | ND 2.5<br>ND 2.5                | ND 0.44<br>ND 0.48               | ND 0.44<br>ND 0.48               | ND 0.44<br>ND 0.48            | ND 0.44<br>ND 0.48               | ND 5<br>ND 5                    |
| 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE) 1,1-Dichloropropene        | μg/L<br>μg/L                     | ND 5<br>ND 5<br>ND 5     | ND 10<br>ND 10<br>ND 10   | ND 2<br>ND 2.6<br>ND 2.4   | 1.4 J,H<br>2.1 J,H<br>ND 0.6 H     | 1.3 J<br>2.6 J<br>ND 1.2       | 9.5<br>5.3<br>ND 2              | 13<br>6.3<br>ND 0.5             | 11<br>5<br>ND 2.5               | 9.6<br>4.3<br>ND 0.48            | 8.2<br>3.6<br>ND 0.48            | 9.1<br>4.5<br>ND 0.48         | 12<br>5.6<br>ND 0.48             | ND 5<br>ND 5<br>ND 5            |
| 1,2,3-Trichloropropene 1,2,3-Trichloropropane                                        | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 10           | ND 20<br>ND 20            | ND 2.4<br>ND 8<br>ND 2.6   | ND 0.65 H                          | ND 1.2<br>ND 4<br>ND 1.3       | ND 4<br>ND 4                    | ND 1<br>ND 1                    | ND 5<br>ND 5                    | ND 1.6<br>ND 0.52                | ND 1.6<br>ND 0.52                | ND 0.48<br>ND 1.6<br>ND 0.52  | ND 1.6<br>ND 0.52                | ND 10<br>ND 10                  |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene                                     | μg/L<br>μg/L                     | ND 10<br>ND 10           | ND 20<br>ND 20            | ND 5<br>ND 6.4             | ND 1.3 H<br>ND 1.6 H               | ND 2.5<br>ND 3.2               | ND 4<br>ND 4                    | ND 1<br>ND 1                    | ND 5<br>ND 5                    | ND 1<br>ND 1.3                   | ND 1<br>ND 1.3                   | ND 1<br>ND 1.3                | ND 1 *+<br>ND 1.3                | ND 10<br>ND 10                  |
| 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene       | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 5<br>ND 5    | ND 20<br>ND 10<br>ND 10   | ND 4<br>ND 2.4<br>ND 1.9   | ND 1 H<br>ND 0.6 H<br>ND 0.49 H    | ND 2<br>ND 1.2<br>ND 0.97      | ND 4<br>ND 2<br>19              | ND 1<br>ND 0.5<br>17            | ND 5<br>ND 2.5                  | ND 0.8<br>ND 0.48<br>9.2         | ND 0.8<br>ND 0.48                | ND 0.8<br>ND 0.48             | ND 0.8<br>ND 0.48<br>20          | ND 10<br>ND 5<br>ND 5           |
| 1,2-Dichloropethane 1,2-Dichloropropane                                              | μg/L<br>μg/L                     | ND 5<br>ND 5<br>ND 5     | ND 10<br>ND 10<br>ND 10   | ND 2.8<br>ND 3<br>ND 3.2   | ND 0.7 H<br>ND 0.75 H<br>ND 0.8 H  | ND 1.4<br>ND 1.5<br>ND 1.6     | ND 2<br>ND 2<br>ND 2            | ND 0.5<br>ND 0.5<br>ND 0.5      | ND 2.5<br>ND 2.5<br>ND 2.5      | ND 0.56<br>ND 0.6<br>ND 0.64     | ND 0.56<br>ND 0.6<br>ND 0.64     | ND 0.56<br>ND 0.6<br>ND 0.64  | ND 0.56<br>ND 0.6<br>ND 0.64     | ND 5<br>ND 5<br>ND 5            |
| 1,3-Dichloropropane                                                                  | µg/L<br>µg/L<br>µg/L             | ND 5<br>ND 10            | ND 10<br>ND 20            | ND 1.7<br>ND 2             | ND 0.43 H<br>ND 0.5 H              | ND 0.86<br>ND 1                | ND 2<br>ND 4                    | ND 0.5<br>ND 1                  | ND 2.5<br>ND 5                  | ND 0.34<br>ND 0.4                | ND 0.34<br>ND 0.4                | ND 0.34<br>ND 0.4             | ND 0.34<br>ND 0.4                | ND 5<br>ND 10                   |
| 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK)                             | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10<br>ND 20   | ND 10<br>ND 20<br>ND 40   | ND 1.7<br>ND 9.2<br>ND 6.6 | ND 0.42 H<br>ND 2.3 H<br>ND 1.7 H  | ND 0.83<br>ND 4.6<br>ND 3.3    | ND 2<br>ND 4<br>ND 8            | ND 0.5<br>ND 1<br>ND 2          | ND 2.5<br>ND 5<br>ND 10         | ND 0.33<br>ND 1.8<br>ND 1.3      | ND 0.33<br>ND 1.8<br>ND 1.3      | ND 0.33<br>ND 1.8<br>ND 1.3   | ND 0.33<br>ND 1.8<br>ND 1.3      | ND 5<br>ND 10<br>ND 20          |
| 2-Chlorotoluene 2-Hexanone                                                           | μg/L<br>μg/L                     | ND 5<br>ND 20            | ND 10<br>ND 40            | ND 2.2<br>ND 3.4           | ND 0.55 H<br>ND 0.85 H             | ND 1.1<br>ND 1.7               | ND 2<br>ND 8                    | ND 0.5<br>ND 2                  | ND 2.5<br>ND 10                 | ND 0.44<br>ND 0.68               | ND 0.44<br>ND 0.68               | ND 0.44<br>ND 0.68            | ND 0.44<br>ND 0.68               | ND 5<br>ND 20                   |
| 4-Chlorotoluene 4-Isopropyltoluene Acetone                                           | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10<br>ND 100  | ND 10<br>ND 20<br>ND 200  | ND 2<br>ND 3<br>ND 76      | ND 0.5 H<br>ND 0.75 H<br>ND 19 H   | ND 1<br>ND 1.5<br>ND 38        | ND 2<br>ND 4<br>ND 40           | ND 0.5<br>ND 1<br>ND 10         | ND 2.5<br>ND 5<br>ND 50         | ND 0.4<br>ND 0.6<br>ND 15        | ND 0.4<br>ND 0.6<br>ND 15        | ND 0.4<br>ND 0.6<br>ND 15     | ND 0.4<br>ND 0.6<br>ND 15        | ND 5<br>ND 10<br>ND 100         |
| Benzene Bromobenzene                                                                 | μg/L<br>μg/L                     | ND 5<br>ND 10            | ND 10<br>ND 20            | ND 1.6<br>ND 1.8           | ND 0.4 H<br>ND 0.46 H              | ND 0.8<br>ND 0.91              | ND 2<br>ND 4                    | ND 0.5<br>ND 1                  | ND 2.5<br>ND 5                  | ND 0.32<br>ND 0.36               | ND 0.32<br>ND 0.36               | ND 0.32<br>ND 0.36            | ND 0.32<br>ND 0.36               | ND 5<br>ND 10                   |
| Bromochloromethane Bromodichloromethane Bromoform                                    | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 5<br>ND 10   | ND 20<br>ND 10<br>ND 20   | ND 3.6<br>ND 2.8<br>ND 3.8 | ND 0.9 H<br>ND 0.7 H<br>ND 0.95 H  | ND 1.8<br>ND 1.4<br>ND 1.9 *+  | ND 4<br>ND 2<br>ND 4            | ND 1<br>ND 0.5<br>ND 1          | ND 5<br>ND 2.5<br>ND 5          | ND 0.72<br>ND 0.56<br>ND 0.76    | ND 0.72<br>ND 0.56<br>ND 0.76    | ND 0.72<br>ND 0.56<br>ND 0.76 | ND 0.72<br>ND 0.56<br>ND 0.76    | ND 10<br>ND 5<br>ND 10          |
| Bromomethane<br>Carbon Disulfide                                                     | μg/L<br>μg/L                     | ND 10<br>ND 20           | ND 20<br>ND 40            | ND 4.2<br>ND 7.2           | ND 1.1 H<br>ND 1.8 H               | ND 2.1<br>ND 3.6               | ND 4<br>ND 8                    | ND 1<br>ND 2                    | ND 5<br>ND 10                   | ND 0.84<br>ND 1.4                | ND 0.84<br>ND 1.4                | ND 0.84<br>ND 1.4             | ND 0.84<br>ND 1.4                | ND 10<br>ND 20                  |
| Carbon Tetrachloride Chlorobenzene Chloroethane                                      | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5<br>ND 10    | ND 10<br>ND 10<br>ND 20   | ND 2.4<br>ND 1.4<br>ND 4.8 | ND 0.6 H<br>ND 0.35 H<br>ND 1.2 H  | ND 1.2 *+<br>ND 0.7<br>ND 2.4  | ND 2<br>ND 2<br>ND 4            | ND 0.5<br>ND 0.5<br>ND 1        | ND 2.5<br>ND 2.5<br>ND 5        | ND 0.48<br>ND 0.28<br>ND 0.96    | ND 0.48<br>ND 0.28<br>ND 0.96    | ND 0.48<br>ND 0.28<br>ND 0.96 | ND 0.48<br>ND 0.28<br>ND 0.96    | ND 5<br>ND 5<br>ND 10           |
| Chloroform<br>Chloromethane                                                          | μg/L<br>μg/L                     | ND 10<br>ND 10           | ND 20<br>ND 20            | ND 2.4<br>ND 5.2           | ND 0.6 H<br>ND 1.3 H               | ND 1.2<br>ND 2.6               | ND 4<br>ND 4                    | ND 1<br>ND 1                    | ND 5<br>ND 5                    | ND 0.48<br>ND 1                  | ND 0.48<br>ND 1                  | ND 0.48<br>ND 1               | ND 0.48<br>ND 1                  | ND 10<br>ND 10                  |
| cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane                  | μg/L<br>μg/L<br>μg/L             | 590<br>ND 5<br>ND 5      | 690<br>ND 10<br>ND 10     | 570<br>ND 3<br>ND 3.2      | <br>ND 0.75 H<br>ND 0.8 H          | E 820 E<br>750<br>ND 1.5       | 190<br>ND 2<br>ND 2             | 200<br>ND 0.5<br>ND 0.5         | 200<br>ND 2.5<br>ND 2.5         | 180<br>ND 0.6<br>ND 0.64         | 170<br>ND 0.6<br>ND 0.64         | 170<br>ND 0.6<br>ND 0.64      | 230<br>ND 0.6<br>ND 0.64         | 380<br>ND 5<br>ND 5             |
| Dibromomethane Dichlorodifluoromethane (CFC 12)                                      | μg/L<br>μg/L                     | ND 5<br>ND 10            | ND 10<br>ND 20            | ND 3.4<br>ND 6.4           | ND 0.85 H<br>ND 1.6 H              | ND 1.6<br>ND 1.7               | ND 2<br>ND 4                    | ND 0.5<br>ND 1                  | ND 2.5<br>ND 5                  | ND 0.68<br>ND 1.3                | ND 0.68<br>ND 1.3                | ND 0.68<br>ND 1.3             | ND 0.68<br>ND 1.3                | ND 5<br>ND 10                   |
| Ethylbenzene Hexachlorobutadiene Isopropylbenzene                                    | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10 ,*<br>ND 5 | ND 10<br>ND 20<br>ND 10   | ND 1.7<br>ND 4.6<br>ND 2.2 | ND 0.42 H<br>ND 1.2 H<br>ND 0.55 H | ND 3.2<br>ND 0.84<br>ND 2.3 *+ | ND 2<br>ND 4 ,*<br>ND 2         | ND 0.5<br>ND 1<br>ND 0.5        | ND 2.5<br>ND 5<br>ND 2.5        | ND 0.34<br>ND 0.92<br>ND 0.44    | ND 0.34<br>ND 0.92<br>ND 0.44    | ND 0.34<br>ND 0.92<br>ND 0.44 | ND 0.34<br>ND 0.92 *+<br>ND 0.44 | ND 5<br>ND 10<br>ND 5           |
| Methyl Isobutyl Ketone<br>Methylene Chloride                                         | μg/L<br>μg/L                     | ND 20<br>ND 10           | ND 40<br>ND 20            | ND 2.2<br>ND 3.2           | ND 0.55 H<br>1.3 J,H,B             | ND 1.1<br>ND 1.1               | ND 8<br>ND 4                    | ND 2<br>ND 1                    | ND 10<br>ND 5                   | ND 0.44<br>ND 0.64               | ND 0.44<br>ND 0.64               | ND 0.44<br>ND 0.64            | ND 0.44<br>ND 0.64               | ND 20<br>ND 10                  |
| MTBE Naphthalene n-Butylbenzene                                                      | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10<br>ND 10   | ND 10<br>ND 20<br>ND 20   | ND 2.4<br>ND 9.6<br>ND 3.6 | ND 0.6 H<br>ND 2.4 H<br>ND 0.9 H   | ND 1.6<br>ND 1.2<br>ND 4.8     | ND 2<br>ND 4<br>ND 4            | ND 0.5<br>ND 1<br>ND 1          | ND 2.5<br>ND 5<br>ND 5          | ND 0.48<br>ND 1.9<br>ND 0.72     | ND 0.48<br>ND 1.9<br>ND 0.72     | ND 0.48<br>ND 1.9<br>ND 0.72  | ND 0.48<br>ND 1.9<br>ND 0.72     | ND 5<br>ND 10<br>ND 10          |
| n-Propylbenzene<br>sec-Butylbenzene                                                  | μg/L<br>μg/L                     | ND 10<br>ND 10           | ND 20<br>ND 20            | ND 2.2<br>ND 2.8           | ND 0.55 H<br>ND 0.7 H              | ND 1.8<br>ND 1.1               | ND 4<br>ND 4                    | ND 1<br>ND 1                    | ND 5<br>ND 5                    | ND 0.44<br>ND 0.56               | ND 0.44<br>ND 0.56               | ND 0.44<br>ND 0.56            | ND 0.44<br>ND 0.56               | ND 10<br>ND 10                  |
| Styrene tert-Butylbenzene Tetrachloroethene (PCE)                                    | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10<br>ND 5    | ND 10<br>ND 20<br>ND 10   | ND 2.6<br>ND 2.6<br>ND 2   | ND 0.65 H<br>ND 0.65 H<br>ND 0.5 H | ND 1.4<br>ND 1.3<br>ND 1.3     | ND 2<br>ND 4<br>ND 2            | ND 0.5<br>ND 1<br>ND 0.5        | ND 2.5<br>ND 5<br>ND 2.5        | ND 0.52<br>ND 0.52<br>1.2 J      | ND 0.52<br>ND 0.52<br>1.1 J      | ND 0.52<br>ND 0.52<br>ND 0.4  | ND 0.52<br>ND 0.52<br>ND 0.4     | ND 5<br>ND 10<br>ND 5           |
| Toluene<br>trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene                     | μg/L<br>μg/L                     | ND 5<br>ND 5<br>ND 5     | ND 10<br>ND 10<br>ND 10   | ND 1.9<br>4.3 J<br>ND 3.2  | ND 0.48 H<br>4.3 H<br>ND 0.8 H     | ND 1<br>ND 0.95<br>4.91        | ND 2<br>ND 2<br>ND 2            | ND 0.5<br>1.2<br>ND 0.5         | ND 2.5<br>ND 2.5<br>ND 2.5      | ND 0.38<br>ND 0.44<br>ND 0.64    | ND 0.38<br>1.1 J<br>ND 0.64      | ND 0.38<br>1.6 J<br>ND 0.64   | ND 0.38<br>1.4 J<br>ND 0.64      | ND 5<br>ND 5<br>ND 5            |
| Trichloroethene (TCE) Trichlorofluoromethane (CFC 11)                                | μg/L<br>μg/L<br>μg/L             | 27<br>ND 10              | ND 10<br>ND 20            | ND 2<br>ND 2.6             | 2 J,H<br>ND 0.65 H                 | ND 1.6<br>2.5 J                | 28<br>ND 4                      | 8.4<br>ND 1                     | 3.2<br>ND 5                     | 27<br>ND 0.52                    | 15<br>ND 0.52                    | 2.7<br>ND 0.52                | 3.5<br>ND 0.52                   | 17<br>ND 10                     |
| Vinyl Acetate Vinyl Chloride Xylenes, Total                                          | μg/L<br>μg/L<br>μg/L             | ND 20<br>27<br>ND 5      | ND 40<br>26<br>ND 10      | ND 3.8<br>18<br>ND 5.4     | ND 0.95 H<br>19 H<br>ND 1.4 H      | ND 1.3<br>ND 1.9<br>36         | ND 8<br>7.4<br>ND 2             | ND 2<br>10<br>ND 0.5            | ND 10<br>7.5<br>ND 2.5          | ND 0.76<br>3.9<br>ND 1.1         | ND 0.76<br>8.2<br>ND 1.1         | ND 0.76<br>9.2<br>ND 1.1      | ND 0.76 *+<br>11<br>ND 1.1       | ND 20<br>38<br>ND 5             |
| Total Organic Carbon                                                                 | mg/L                             | 1.6                      | 1.7                       |                            | 1 53 10C - 101/                    |                                |                                 | 1.8                             | 1.9                             | 1.8                              | 1.8                              | 1.3                           | 1.3                              | 1.5                             |
| Sulfide                                                                              | mg/L                             | ND 0.1                   | 0.11                      | ND 0.022                   | SM 4500S.                          | P-D - SULFIDE                  | ND 0.1                          | ND 0.05                         | ND 0.05 ^1+                     | 0.2 F1                           | 0.27                             | ND 0.022 F1                   | ND 0.022                         | ND 0.1                          |
| Bicarbonate Alkalinity                                                               | mg/L                             |                          |                           |                            | SM 23208                           | - ALKALINITY                   | 450                             | 460                             | 460                             | 450                              | 440                              | 440                           | 440                              | 420                             |
| Carbonate Hydroxide<br>Hydroxide Alkalinity<br>Total Alkalinity                      | mg/L<br>mg/L<br>mg/L             |                          |                           |                            |                                    |                                | ND 5<br>ND 5<br>450             | ND 5<br>ND 5<br>460             | ND 5<br>ND 5<br>460             | ND 5<br>ND 5<br>450              | ND 5<br>ND 5<br>440              | ND 5<br>ND 5<br>440           | ND 5<br>ND 5<br>440              | ND 5<br>ND 5<br>420             |
| Nitrate                                                                              | mg/L                             | ND 1.3                   | ND 1.3                    |                            | PA 300.0 - NIT                     | RATE AND SUL<br>ND 0.5         | <del>1</del>                    | ND 1.3                          | ND 1.3                          | ND 0.5                           | ND 0.5                           | ND 0.5                        | ND 0.5                           | ND 1.3                          |
| Sulfate                                                                              | mg/L                             | 180                      | 180                       | 180                        | <br>A 200.7 - ARSEI                | 180                            | 130                             | 130                             | 130                             | 140                              | 140                              | 130                           | 130                              | 180                             |
| Arsenic<br>Manganese                                                                 | μg/L<br>μg/L                     |                          |                           | ND 4.4<br>370              |                                    | ND 19 H<br>230 H               |                                 |                                 | ND 15<br>450                    | 7.2 J<br>340                     | 10 J<br>430                      | 11 J<br>410                   | ND 19 H<br>410 H                 |                                 |
| Hydrogen                                                                             | nM                               |                          |                           |                            |                                    | - HYDROGEN                     | 1.0 J                           | ND 0.49                         | 2.1                             | ND 0.49                          | 4.0                              | 1.0 J                         | 0.82 J                           | 1.6 J                           |
| 4-Methylpentanoic Acid Acetic Acid                                                   | mg/L<br>mg/L                     |                          |                           |                            | AM23G - VOLA<br>                   |                                | ND 0.056                        | <br>ND 0.12                     | ND 0.056                        | ND 0.056                         | ND 0.056                         | ND 0.56                       | ND 0.56                          | ND 0.056                        |
| Butyric Acid<br>Formic Acid                                                          | mg/L<br>mg/L                     |                          |                           |                            |                                    |                                | ND 0.058<br>4.9                 | ND 0.058<br>0.42 J              | ND 0.058<br>0.26 J              | ND 0.058<br>4.7                  | ND 0.058<br>6.6                  | ND 0.58                       | ND 0.58<br>48                    | ND 0.058<br>4.8                 |
| i-Hexanoic Acid Isopentanoic Acid Lactic Acid                                        | mg/L<br>mg/L<br>mg/L             |                          |                           |                            |                                    |                                | 0.075 J<br>ND 0.061<br>ND 0.053 | ND 0.056<br>ND 0.061<br>0.088 J | ND 0.058<br>ND 0.061<br>0.067 J | ND 0.058<br>ND 0.061<br>ND 0.053 | ND 0.058<br>ND 0.061<br>ND 0.053 | ND 0.58<br>ND 0.61<br>ND 0.53 | 0.7 J<br>ND 0.61<br>ND 0.53      | 0.077 J<br>ND 0.061<br>ND 0.053 |
| Pentanoic Acid Propionic Acid                                                        | mg/L<br>mg/L                     |                          |                           |                            |                                    |                                | ND 0.056<br>ND 0.053<br>ND 0.06  | ND 0.056<br>ND 0.053<br>ND 0.06  | ND 0.56<br>ND 0.53<br>ND 0.6  | ND 0.56<br>ND 0.53<br>ND 0.6     | ND 0.056<br>ND 0.053<br>ND 0.06 |
| Pyruvic Acid  Carbon Dioxide                                                         | mg/L mg/L                        |                          | I                         |                            |                                    | SSOLVED GASE                   | <del></del>                     | 29.9                            | 29.5                            | 29.5                             | 24                               | 45.3                          | 32.7                             | 31.2                            |
| Ethane<br>Ethene                                                                     | mg/L<br>mg/L                     | 0.041<br>ND 0.000075     | ND 0.000075<br>ND 0.00012 | ND 0.00017<br>ND 0.00024   |                                    | 0.00026 J<br>0.0088            | ND 0.000075<br>0.00051 J        | ND 0.000075<br>0.00032 J        | ND 0.000075<br>0.0012           | ND 0.000075<br>ND 0.00012        | ND 0.00017<br>0.00049 J          | ND 0.00017<br>0.00064 J       | ND 0.00017<br>0.00054 J          | 0.00027 J<br>0.0011             |
| Methane                                                                              | mg/L                             | ND 0.00012               | 0.024                     | 0.013                      | QuantArray-C                       | 0.018<br>hlor - MICROB         |                                 | 0.02                            | 0.022                           | 0.019                            | 0.028                            | 0.028                         | 0.033                            | 1.5                             |
| APS<br>BVC<br>CER                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | 603<br>< 0.5<br>< 4.6           |                                 |                                 | 11700<br><0.5<br><4.6            |                                  | 4620<br><0.5<br><5.5          | 4410<br><0.5<br><4.7             | 18000<br>< 0.5<br>279           |
| CFR<br>DCA                                                                           | Cells/mL<br>Cells/mL             |                          |                           |                            |                                    |                                | < 4.6<br>< 4.6                  |                                 |                                 | <4.6<br><4.6                     |                                  | <5.5<br><5.5                  | <4.7<br><4.7                     | < 4.5<br>< 4.5                  |
| DCM DCMA                                                                             | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | < 4.6<br>< 4.6<br>< 4.6         |                                 |                                 | <4.6<br><4.6<br><4.6             |                                  | <5.5<br><5.5<br><5.5          | <4.7<br><4.7<br><4.7             | < 4.5<br>< 4.5<br>< 4.5         |
| DECO DHBt                                                                            | Cells/mL<br>Cells/mL             |                          |                           |                            |                                    |                                | 798<br>< 4.6                    |                                 |                                 | 2390<br>355                      |                                  | 1240<br><5.5                  | 1070<br><4.7                     | 815<br>2650                     |
| DHC DHG DS8                                                                          | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | 28<br>< 4.6<br>< 4.6            |                                 |                                 | 46<br><4.6<br>570                |                                  | 97.8<br>3160<br>192           | 48.6<br><4.7<br><4.7             | 621<br>12000<br>3700            |
| DSM<br>EBAC<br>Func                                                                  | Cells/mL<br>Cells/mL             |                          |                           |                            |                                    |                                | 29.9<br>114000                  |                                 |                                 | 43.7<br>357000                   |                                  | 405<br>452000                 | <4.7<br>176000                   | < 4.5<br>1300000                |
| EtnC<br>EtnE<br>MGN                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | 57.4<br>38.8<br>< 4.6           |                                 |                                 | 441<br>354<br>8.6                |                                  | 106<br>425<br>3.4 J           | <4.7<br>33.5<br>9                | < 4.5<br>2.5 J<br>< 4.5         |
| PCE-1<br>PCE-2<br>PHE                                                                | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | < 4.6<br>< 4.6<br>25.4          |                                 |                                 | <4.6<br><4.6<br>76.6             |                                  | <5.5<br><5.5                  | <4.7<br><4.7<br>31.6             | < 4.5<br>30.6<br>20.7           |
| RDEG<br>RMO                                                                          | Cells/mL<br>Cells/mL             |                          |                           |                            |                                    |                                | < 4.6<br>< 4.6                  |                                 |                                 | 351<br><4.6                      |                                  | 596<br><5.5                   | 167<br><4.7                      | < 4.5<br>< 4.5                  |
| SMMO<br>TCBO<br>TCE                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL |                          |                           |                            |                                    |                                | < 4.6<br>< 4.6<br>< 0.5         |                                 |                                 | <4.6<br><4.6                     |                                  | <5.5<br><5.5<br>0.2 J         | <4.7<br><4.7<br>0.3 J            | < 4.5<br>< 4.5                  |
| TDR<br>TOD                                                                           | Cells/mL<br>Cells/mL             |                          |                           |                            |                                    |                                | < 4.6<br>0.9 J                  |                                 |                                 | <4.6<br><4.6                     |                                  | <5.5<br><5.5                  | <4.7<br><4.7                     | < 4.5<br>< 4.5                  |
| VCR                                                                                  | Cells/mL                         |                          |                           |                            |                                    |                                | < 0.5                           |                                 |                                 | 1.4                              |                                  | 0.3 J                         | 0.4 J                            | 112                             |



| Location ID Sample Date                                                                            |                                  | S137A<br>9/15/20        | S137A<br>12/17/21        | S137A<br>12/17/21          | S137A<br>1/18/21              | S137A<br>2/15/21                | S137A<br>5/17/21                 | S137A<br>8/17/21              | S137A<br>11/8/21                | S138A<br>9/16/20                | S138A<br>12/18/20            | S138A<br>1/20/20             | S138A<br>2/17/21              | S138A<br>2/17/21         |
|----------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|--------------------------|----------------------------|-------------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------------|---------------------------------|------------------------------|------------------------------|-------------------------------|--------------------------|
| Sample Purpose<br>Analysis Type                                                                    |                                  | FD<br>INIT              | REG<br>INIT              | FD<br>INIT                 | REG<br>INIT                   | REG<br>INIT                     | REG<br>INIT                      | REG<br>INIT                   | REG<br>INIT                     | REG<br>INIT                     | REG<br>INIT                  | REG<br>INIT                  | REG<br>INIT                   | FD<br>INIT               |
| Parameter                                                                                          | Result Unit                      | Result                  | Result                   | Result                     | Result                        | Result                          | Result                           | Result                        | Result                          | Result                          | Result                       | Result                       | Result                        | Result                   |
| 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA)                                              | µg/L                             | ND 5<br>ND 5            | ND 2                     | ND 2.0<br>ND 2.0           | ND 0.5<br>ND 0.5              | ND 0.1<br>ND 0.1                | ND 0.1<br>ND 0.17                | ND 0.2<br>ND 0.34             | ND 0.2<br>ND 0.34               | ND 250<br>ND 250                | ND 250<br>ND 250             | ND 250<br>ND 250             | ND 25<br>ND 25                | ND 25<br>ND 25           |
| 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane                                                      | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5            | ND 2<br>ND 2             | ND 2.0<br>ND 2.0           | ND 0.5<br>ND 0.5              | ND 0.11<br>ND 0.11              | ND 0.17<br>ND 0.11               | ND 0.34<br>ND 0.2<br>ND 0.22  | ND 0.34<br>ND 0.2<br>ND 0.22    | ND 250<br>ND 250                | ND 250<br>ND 250             | ND 250<br>ND 250             | ND 28<br>ND 30                | ND 28<br>ND 30           |
| 1,1,2-Trichlorotrifluoroethane (CFC 113) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE) | μg/L<br>μg/L                     | ND 5<br>ND 5<br>ND 5    | ND 2<br>4.3<br>ND 2      | ND 2.0<br>4.6<br>ND 2.0    | ND 0.5<br>7.5<br>ND 0.5       | ND 0.17<br>6.1<br>ND 0.13       | ND 0.12<br>5.8<br>ND 0.13        | ND 0.24<br>7<br>ND 0.26       | ND 0.24<br>8.5<br>ND 0.26       | 2000<br>ND 250<br>ND 250        | 3600<br>270<br>ND 250        | 1700<br>ND 250<br>ND 250     | 760<br>100 J<br>ND 33         | 770<br>99 J<br>ND 33     |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene                                                         | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 10           | ND 2<br>ND 4             | ND 2.0<br>ND 4.0           | ND 0.5<br>ND 1                | ND 0.13<br>ND 0.12<br>ND 0.4    | ND 0.12<br>ND 0.4                | ND 0.24<br>ND 0.8             | ND 0.24<br>ND 0.8               | ND 250<br>ND 500                | ND 250<br>ND 500             | ND 250<br>ND 500             | ND 30<br>ND 100               | ND 30<br>ND 100          |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene                               | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 10<br>ND 10 | ND 4<br>ND 4<br>ND 4     | ND 4.0<br>ND 4.0<br>ND 4.0 | ND 1<br>ND 1<br>ND 1          | ND 0.13<br>ND 0.25<br>ND 0.32   | ND 0.13<br>ND 0.25<br>ND 0.32    | ND 0.26<br>ND 0.5<br>ND 0.64  | ND 0.26<br>ND 0.5 *+<br>ND 0.64 | ND 500<br>ND 500<br>ND 500      | ND 500<br>ND 500<br>ND 500   | ND 500<br>ND 500<br>ND 500   | ND 33<br>ND 63<br>ND 80       | ND 33<br>ND 63<br>ND 80  |
| 1,2-Dibromo-3chloropropane (DBCP) 1,2-Dibromoethane (EDB)                                          | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 5           | ND 4<br>ND 2             | ND 4.0<br>ND 2.0           | ND 1<br>ND 0.5                | ND 0.2<br>ND 0.12               | ND 0.2<br>ND 0.12                | ND 0.4<br>ND 0.24             | ND 0.4<br>ND 0.24               | ND 500<br>ND 250                | ND 500<br>ND 250             | ND 500 *+<br>ND 250          | ND 50<br>ND 30                | ND 50<br>ND 30           |
| 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane                                         | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5<br>ND 5    | ND 2<br>ND 2<br>ND 2     | ND 2.0<br>ND 2.0<br>ND 2.0 | ND 0.5<br>ND 0.5<br>ND 0.5    | ND 0.097<br>ND 0.14<br>ND 0.15  | ND 0.097<br>ND 0.14<br>ND 0.15   | ND 0.19<br>ND 0.28<br>ND 0.3  | ND 0.19<br>ND 0.28<br>ND 0.3    | ND 250<br>ND 250<br>ND 250      | ND 250<br>ND 250<br>ND 250   | ND 250<br>ND 250<br>ND 250   | ND 24<br>ND 35<br>ND 38       | ND 24<br>ND 35<br>ND 38  |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene                                                      | μg/L<br>μg/L                     | ND 5<br>ND 5            | ND 2<br>ND 2             | ND 2.0<br>ND 4.0           | ND 0.5<br>ND 0.5              | ND 0.16<br>ND 0.086             | ND 0.16<br>ND 0.086              | ND 0.32<br>ND 0.17            | ND 0.32<br>ND 0.17              | ND 250<br>ND 250                | ND 250<br>ND 250             | ND 250<br>ND 250             | ND 40<br>ND 22                | ND 40<br>ND 22           |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene<br>2,2-Dichloropropane                                  | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 5<br>ND 10  | ND 4<br>ND 2<br>ND 4     | ND 2.0<br>ND 4.0<br>ND 8.0 | ND 1<br>ND 0.5<br>ND 1        | ND 0.1<br>ND 0.083<br>ND 0.46   | ND 0.1<br>ND 0.083<br>ND 0.46    | ND 0.2<br>ND 0.17<br>ND 0.92  | ND 0.2<br>ND 0.17<br>ND 0.92    | ND 500<br>ND 250<br>ND 500      | ND 500<br>ND 250<br>ND 500   | ND 500<br>ND 250<br>ND 500   | ND 25<br>ND 21<br>ND 120      | ND 25<br>ND 21<br>ND 120 |
| 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone                                                        | μg/L<br>μg/L<br>μg/L             | ND 20<br>ND 5<br>ND 20  | ND 8<br>ND 2<br>ND 8     | ND 2.0<br>ND 8.0<br>ND 2.0 | 3.8<br>ND 0.5<br>ND 2         | 2.9<br>ND 0.11<br>ND 0.17       | 1.1 J<br>ND 0.11<br>ND 0.17      | ND 0.66<br>ND 0.22<br>ND 0.34 | ND 0.66<br>ND 0.22<br>ND 0.34   | ND 1000<br>ND 250<br>ND 1000    | ND 1000<br>ND 250<br>ND 1000 | ND 1000<br>ND 250<br>ND 1000 | ND 83<br>ND 28<br>ND 43       | ND 83<br>ND 28<br>ND 43  |
| 4-Chlorotoluene 4-Isopropyltoluene                                                                 | μg/L<br>μg/L                     | ND 5<br>ND 10           | ND 2<br>ND 4             | ND 4.0<br>ND 8.0           | ND 0.5<br>ND 1                | ND 0.1<br>ND 0.15               | ND 0.1<br>ND 0.15                | ND 0.2<br>ND 0.3              | ND 0.2<br>ND 0.3                | ND 250<br>ND 500                | ND 250<br>ND 500             | ND 250<br>ND 500             | ND 25<br>ND 38                | ND 25<br>ND 38           |
| Acetone Benzene Bromobenzene                                                                       | μg/L<br>μg/L<br>μg/L             | ND 100<br>ND 5<br>ND 10 | ND 40<br>ND 2<br>ND 4    | ND 40<br>ND 2.0<br>ND 4.0  | 32<br>ND 0.5<br>ND 1          | ND 0.08<br>ND 0.091             | ND 3.8<br>ND 0.08<br>ND 0.091    | ND 7.6<br>ND 0.16<br>ND 0.18  | ND 7.6<br>ND 0.16<br>ND 0.18    | ND 5000<br>ND 250<br>ND 500     | ND 5000<br>ND 250<br>ND 500  | ND 5000<br>ND 250<br>ND 500  | ND 950<br>ND 20<br>ND 23      | ND 950<br>ND 20<br>ND 23 |
| Bromochloromethane<br>Bromodichloromethane                                                         | μg/L<br>μg/L                     | ND 10<br>ND 5           | ND 4<br>ND 2             | ND 4.0<br>ND 4.0           | ND 1<br>ND 0.5                | ND 0.18<br>ND 0.14              | ND 0.18<br>ND 0.14               | ND 0.36<br>ND 0.28            | ND 0.36<br>ND 0.28              | ND 500<br>ND 250                | ND 500<br>ND 250             | ND 500<br>ND 250             | ND 45<br>ND 35                | ND 45<br>ND 35           |
| Bromoform Bromomethane Carbon Disulfide                                                            | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 10<br>ND 20 | ND 4<br>ND 4<br>ND 8     | ND 8.0<br>ND 2.0<br>ND 2.0 | ND 1<br>ND 1<br>ND 2          | ND 0.19<br>ND 0.21<br>ND 0.36   | ND 0.19<br>ND 0.21<br>ND 0.36    | ND 0.38<br>ND 0.42<br>ND 0.72 | ND 0.38<br>ND 0.42<br>ND 0.72   | ND 500<br>ND 500<br>ND 1000     | ND 500<br>ND 500<br>ND 1000  | ND 500<br>ND 500<br>ND 1000  | ND 48<br>ND 53<br>ND 90       | ND 48<br>ND 53<br>ND 90  |
| Carbon Tetrachloride<br>Chlorobenzene                                                              | μg/L<br>μg/L                     | ND 5<br>ND 5            | ND 2<br>ND 2             | ND 4.0<br>ND 2.0           | ND 0.5<br>ND 0.5              | ND 0.12<br>ND 0.07              | ND 0.12<br>ND 0.07               | ND 0.24<br>ND 0.14            | ND 0.24<br>ND 0.14              | ND 250<br>ND 250                | ND 250<br>ND 250             | ND 250<br>ND 250             | ND 30<br>ND 18                | ND 30<br>ND 18           |
| Chloroethane Chloroform Chloromethane                                                              | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 10<br>ND 10 | ND 4<br>ND 4<br>ND 4     | ND 4.0<br>ND 4.0<br>ND 4.0 | ND 1<br>ND 1<br>ND 1          | 1.7<br>ND 0.12<br>ND 0.26       | 5.3<br>ND 0.12<br>ND 0.26        | 4.2<br>ND 0.24<br>ND 0.52     | 4<br>ND 0.24<br>ND 0.52         | ND 500<br>ND 500<br>ND 500      | ND 500<br>ND 500<br>ND 500   | ND 500<br>ND 500<br>ND 500   | ND 60<br>ND 30<br>ND 65       | ND 60<br>ND 30<br>ND 65  |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                                                  | μg/L<br>μg/L                     | 390<br>ND 5             | 190<br>ND 2              | 200<br>ND 2.0              | 15<br>ND 0.5                  | 4<br>ND 0.15                    | 4.8<br>ND 0.15                   | 21<br>ND 0.3                  | 25<br>ND 0.3                    | 25000<br>ND 250                 | 23000<br>ND 250              | 17000<br>ND 250              | 1900<br>ND 38                 | 1900<br>ND 38            |
| Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC 12)                               | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5<br>ND 10   | ND 2<br>ND 2<br>ND 4     | ND 2.0<br>ND 2.0<br>ND 4.0 | ND 0.5<br>ND 0.5<br>ND 1      | ND 0.16<br>ND 0.17<br>ND 0.32   | ND 0.16<br>ND 0.17<br>ND 0.32    | ND 0.32<br>ND 0.34<br>ND 0.64 | ND 0.32<br>ND 0.34<br>ND 0.64   | ND 250<br>ND 250<br>630         | ND 250<br>ND 250<br>ND 500   | ND 250<br>ND 250<br>ND 500   | ND 40<br>ND 43<br>180 J       | ND 40<br>ND 43<br>160 J  |
| Ethylbenzene<br>Hexachlorobutadiene                                                                | μg/L<br>μg/L                     | ND 5<br>ND 10           | ND 2<br>ND 4<br>ND 2     | ND 2.0<br>ND 2.0<br>ND 4.0 | ND 0.5<br>ND 1<br>ND 0.5      | ND 0.084<br>ND 0.23             | ND 0.084<br>ND 0.23<br>ND 0.11   | ND 0.17<br>ND 0.46            | ND 0.17<br>ND 0.46 *+           | ND 250<br>ND 500                | ND 250<br>ND 500             | ND 250<br>ND 500<br>ND 250   | ND 21<br>ND 58                | ND 21<br>ND 58           |
| Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride                                         | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 20<br>ND 10  | ND 8<br>ND 4             | ND 4.0<br>ND 2.0<br>ND 2.0 | ND 0.5<br>ND 2<br>ND 1        | ND 0.11<br>ND 0.11<br>ND 0.16   | ND 0.11<br>ND 0.11<br>ND 0.16    | ND 0.22<br>ND 0.22<br>ND 0.32 | ND 0.22<br>ND 0.22<br>ND 0.32   | ND 250<br>ND 1000<br>ND 500     | ND 250<br>ND 1000<br>ND 500  | ND 250<br>ND 1000<br>ND 500  | ND 28<br>ND 28<br>ND 40       | ND 28<br>ND 28<br>ND 40  |
| MTBE Naphthalene                                                                                   | μg/L<br>μg/L                     | ND 5<br>ND 10<br>ND 10  | ND 2<br>ND 4<br>ND 4     | ND 4.0<br>ND 4.0<br>ND 4.0 | ND 0.5<br>ND 1<br>ND 1        | ND 0.12<br>ND 0.48<br>ND 0.18   | ND 0.12<br>ND 0.48<br>ND 0.18    | ND 0.24<br>ND 0.96<br>ND 0.36 | ND 0.24<br>ND 0.96<br>ND 0.36   | ND 250<br>ND 500<br>ND 500      | ND 250<br>ND 500<br>ND 500   | ND 250<br>ND 500<br>ND 500   | ND 30<br>ND 120<br>ND 45      | ND 30<br>ND 120<br>ND 45 |
| n-Butylbenzene<br>n-Propylbenzene<br>sec-Butylbenzene                                              | μg/L<br>μg/L<br>μg/L             | ND 10<br>ND 10          | ND 4<br>ND 4             | ND 4.0<br>ND 4.0           | ND 1<br>ND 1                  | ND 0.11<br>ND 0.14              | ND 0.11<br>ND 0.14               | ND 0.22<br>ND 0.28            | ND 0.22<br>ND 0.28              | ND 500<br>ND 500                | ND 500<br>ND 500             | ND 500<br>ND 500             | ND 43<br>ND 28<br>ND 35       | ND 43<br>ND 28<br>ND 35  |
| Styrene tert-Butylbenzene Tetrachloroethene (PCE)                                                  | μg/L<br>μg/L                     | ND 5<br>ND 10<br>ND 5   | ND 2<br>ND 4<br>ND 2     | ND 2.0<br>ND 4.0<br>ND 2.0 | ND 0.5<br>ND 1<br>ND 0.5      | ND 0.13<br>ND 0.13<br>ND 0.1    | ND 0.13<br>ND 0.13<br>ND 0.1     | ND 0.26<br>ND 0.26<br>ND 0.2  | ND 0.26<br>ND 0.26<br>ND 0.2    | ND 250<br>ND 500<br>ND 250      | ND 250<br>ND 500<br>ND 250   | ND 250<br>ND 500<br>ND 250   | ND 33<br>ND 33<br>ND 25       | ND 33<br>ND 33<br>ND 25  |
| Toluene<br>trans=1,2-Dichloroethene                                                                | μg/L<br>μg/L<br>μg/L             | ND 5<br>ND 5            | ND 2<br>4.3              | ND 2.0<br>4.5              | ND 0.5<br>6.4                 | ND 0.095<br>5.7                 | ND 0.095<br>4.9                  | ND 0.19<br>4.6                | ND 0.19<br>5.3                  | ND 250<br>ND 250                | ND 250<br>ND 250             | ND 250<br>ND 250             | ND 24<br>ND 28                | 27 J<br>ND 28            |
| trans-1,3-Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11)                    | μg/L<br>μg/L<br>μg/L             | ND 5<br>18<br>ND 10     | ND 2<br>ND 2<br>ND 4     | ND 2.0<br>ND 2.0<br>ND 4.0 | ND 0.5<br>ND 0.5<br>ND 1      | ND 0.16<br>0.52<br>ND 0.13      | ND 0.16<br>1.1<br>ND 0.13        | ND 0.32<br>0.81 J<br>ND 0.26  | ND 0.32<br>1.2<br>ND 0.26       | ND 250<br>6800<br>ND 500        | ND 250<br>ND 250<br>ND 500   | ND 250<br>ND 250<br>ND 500   | ND 40<br>ND 25<br>ND 33       | ND 40<br>ND 25<br>ND 33  |
| Vinyl Acetate<br>Vinyl Chloride                                                                    | μg/L<br>μg/L<br>μg/L             | ND 20<br>37             | ND 8<br>180              | ND 8.0<br>190              | ND 2<br>110                   | ND 0.19<br>37                   | ND 0.19<br>23                    | ND 0.38<br>77                 | ND 0.38 *+                      | ND 1000<br>460                  | ND 1000<br>480               | ND 1000<br>1200              | ND 48<br>9700                 | ND 48<br>9700            |
| Xylenes, Total                                                                                     | μg/L                             | ND 5                    | ND 2                     | T                          |                               | ND 0.27                         | 1                                | ND 0.54                       | ND 0.54                         | ND 250                          | ND 250                       | ND 250                       | ND 68                         | ND 68                    |
| Total Organic Carbon                                                                               | mg/L                             |                         | 110                      |                            | 85<br>SM 4500S<br>ND 0.05 ^1+ | 19<br>2-D - SULFIDE             | 4.7                              | 4.0                           | 4.7                             | 2.3                             | 94                           | 74                           | 43                            |                          |
| Sulfide  Bicarbonate Alkalinity                                                                    | mg/L mg/L                        |                         | ND 0.05 F1               |                            |                               | ND 0.022<br>- ALKALINITY<br>300 | 370                              | 0.34<br>660                   | 770                             | 0.35<br>350                     | 420                          | 420                          | 4.1                           |                          |
| Carbonate Hydroxide<br>Hydroxide Alkalinity                                                        | mg/L<br>mg/L                     |                         | ND 5<br>ND 5             | <br>                       | ND 5<br>ND 5                  | ND 5<br>ND 5                    | ND 5<br>ND 5                     | ND 5<br>ND 5                  | ND 5<br>ND 5                    | ND 5<br>ND 5                    | ND 5<br>ND 5                 | ND 5<br>ND 5                 | ND 5<br>ND 5                  |                          |
| Total Alkalinity                                                                                   | mg/L                             |                         | 270                      | T                          |                               | 300<br>RATE AND SUL             |                                  | 660                           | 770                             | 350                             | 420                          | 420                          | 430                           |                          |
| Nitrate<br>Sulfate                                                                                 | mg/L<br>mg/L                     |                         | ND 0.25                  |                            | ND 0.25<br>1.6                | ND 0.1<br>0.9 J<br>NIC AND MANG | ND 0.1<br>4.4                    | ND 0.5<br>25                  | ND 0.5<br>46                    | ND 0.25<br>160                  | ND 0.1                       | ND 1.3<br>ND 5               | ND 0.024                      |                          |
| Arsenic<br>Manganese                                                                               | μg/L<br>μg/L                     |                         |                          |                            | ND 15<br>6400                 | 11 J<br>8800                    | 5.3 J<br>8600                    | ND 4.4<br>6100                | ND 19 H<br>5100 H               |                                 |                              | ND 15<br>1800                | ND 4.4<br>1100                |                          |
| Hydrogen                                                                                           | nM                               |                         | 15                       |                            | <b>AM20GAX</b><br>4.5         | - HYDROGEN<br>2.2               | 2.2                              | 15                            | 0.90 J                          | 0.61 J                          | 210                          | 59                           | 10                            |                          |
| 4-Methylpentanoic Acid                                                                             | mg/L                             |                         |                          |                            | ND 0.056                      | ND 0.056                        | ND 0.056                         | ND 0.56                       | ND 0.56                         | ND 0.056                        |                              | ND 0.056                     | ND 0.056                      |                          |
| Acetic Acid Butyric Acid Formic Acid                                                               | mg/L<br>mg/L<br>mg/L             |                         | 9.6<br>1.9               |                            | 150<br>5.4<br>0.99            | 0.68<br>4.8                     | 0.18 J<br>ND 0.058               | 5.7<br>ND 0.58<br>46          | 3 J<br>ND 0.58<br>49            | 1.6<br>ND 0.058<br>4.8          | 9.5<br>1.4                   | 130<br>6.8<br>0.7            | 75<br>2.9<br>4.9              |                          |
| i-Hexanoic Acid<br>Isopentanoic Acid                                                               | mg/L<br>mg/L                     |                         | ND 0.11                  |                            | 0.8                           | ND 0.058<br>0.38 J              | ND 0.058<br>ND 0.061             | ND 0.58<br>ND 0.61            | 0.7 J<br>ND 0.61                | 0.12 J<br>ND 0.061              | ND 0.056<br>0.26 J           | 0.65<br>0.31 J               | 0.25 J<br>0.2 J               |                          |
| Lactic Acid Pentanoic Acid Propionic Acid                                                          | mg/L<br>mg/L<br>mg/L             |                         | ND 0.11<br>0.67 J<br>6.2 |                            | 2.9<br>ND 0.056<br>1.4 J      | ND 0.053<br>ND 0.056<br>1.3     | ND 0.053<br>ND 0.056<br>ND 0.053 | ND 0.53<br>ND 0.56<br>0.53 J  | 6.9<br>ND 0.56<br>ND 0.53       | ND 0.053<br>ND 0.056<br>0.056 J | ND 1.1<br>0.45 J<br>2.8 J    | 4.3<br>ND 0.056<br>3.1       | ND 0.053<br>ND 0.056<br>1.5 J |                          |
| Pyruvic Acid                                                                                       | mg/L                             |                         | 0.84 J                   |                            | 0.38 J<br><i>RSK17</i> 3 – DI | ND 0.06                         | ND 0.06                          | ND 0.6                        | ND 0.6                          | ND 0.06                         | 0.31 J                       | 0.32 J                       | 0.15 J                        |                          |
| Carbon Dioxide<br>Ethane<br>Ethene                                                                 | mg/L<br>mg/L<br>mg/L             |                         | 0.0031<br>0.089          |                            | 26.9<br>0.0013<br>0.17        | 60.4<br>0.0008 J<br>0.14        | 39.3<br>0.0024<br>0.14           | 0.011<br>0.18                 | 0.031<br>0.21                   | 20<br>0.015<br>0.74             | 0.026<br>1.4                 | 5.62<br>0.029<br>0.86        | 44.7<br>0.016                 |                          |
| Methane                                                                                            | mg/L                             |                         | 4.3                      |                            | 12                            | 18                              | 9.1                              | 9.5                           | 9.2                             | 0.56                            | 3.4                          | 2.6                          | 1.6                           |                          |
| APS<br>BVC                                                                                         | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | 53700<br><0.6                   |                                  | 438000<br><0.5                | 85200<br><0.5                   | 22100<br>< 0.5                  |                              |                              | 159000<br><0.5                |                          |
| CER<br>CFR<br>DCA                                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | 89.6<br><5.7<br><5.7            |                                  | 1070<br><4.6<br><4.6          | 402<br><4.7<br><4.7             | < 4.7<br>< 4.7<br>< 4.7         |                              |                              | 59<br><5<br><5                |                          |
| DCAR<br>DCM                                                                                        | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | <5.7<br><5.7                    |                                  | <4.6<br><4.6                  | <4.7<br>312                     | < 4.7<br>< 4.7                  |                              |                              | <5<br><5                      |                          |
| DCMA DECO DHBt                                                                                     | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | <5.7<br>7240<br>10200           |                                  | <4.6<br>17600<br>19000        | <4.7<br>4060<br>660             | < 4.7<br>696<br>8840            | <br>                         |                              | <5<br>36500<br>9730           |                          |
| DHC<br>DHG                                                                                         | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | 33600<br>3360                   |                                  | 80000<br>40400                | 18500<br>17600                  | 4670<br>< 4.7                   |                              |                              | 423000<br>979                 |                          |
| DSB DSM EBAC                                                                                       | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | 9850<br>68.2<br>8160000         |                                  | 52200<br>3150<br>14700000     | <4.7<br><4.7<br>2080000         | 13500<br>7900<br>606000         |                              |                              | 3630<br>11700<br>5180000      |                          |
| EtnC<br>EtnE                                                                                       | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | <5.7<br><5.7                    |                                  | <4.6<br>255                   | <4.7<br>18.2                    | 209<br>194                      |                              |                              | <5<br>46.8                    |                          |
| MGN PCE-1 PCE-2                                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | 224000<br><5.7<br><5.7          |                                  | 32000<br><4.6<br>17.1         | 6660<br><4.7<br><4.7            | 3.6 J<br>35.3<br>8080           |                              |                              | 4.2 J<br><5<br>146            |                          |
| PHE<br>RDEG<br>RMO                                                                                 | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | 574<br>5050<br>3040             |                                  | 722<br>1340<br>1380           | 149<br>728<br><4.7              | 9.6<br>< 4.7<br>< 4.7           |                              |                              | 3140<br>6530<br><5            |                          |
| SMMO<br>TCBO                                                                                       | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | <5.7<br><5.7                    |                                  | 4130<br><4.6                  | 16800<br><4.7                   | 42.7<br>< 4.7                   |                              |                              | 68.4<br><5                    |                          |
| TCE TDR TOD                                                                                        | Cells/mL<br>Cells/mL<br>Cells/mL |                         |                          |                            |                               | 3950<br><5.7<br><5.7            |                                  | 11000<br><4.6<br><4.6         | 2880<br><4.7<br>227             | 1150<br>< 4.7<br>774            |                              |                              | 101000<br><5<br>9.8           |                          |
| VCR                                                                                                | Cells/mL<br>Cells/mL             |                         |                          |                            |                               | <5.7<br>2400                    |                                  | <4.6<br>7160                  | 227                             | 774<br>1420                     |                              |                              | 9.8                           |                          |



| Location ID Sample Date                                                                            |                                  | S138A<br>5/19/21                 | S138A<br>8/19/21              | S138A<br>8/19/21         | S138A<br>11/10/21                 | S138A<br>11/10/21        | S139A<br>9/16/20                 | S139A<br>12/17/20          | S139A<br>1/18/21              | S139A<br>2/16/21                 | \$139A<br>5/18/21             | \$139A<br>5/18/21              | S139A<br>8/18/21              | S139A<br>11/10/21           |
|----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------|--------------------------|-----------------------------------|--------------------------|----------------------------------|----------------------------|-------------------------------|----------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------|
| Sample Purpose Analysis Type                                                                       |                                  | REG                              | REG<br>INIT                   | FD<br>INIT               | REG<br>INIT                       | FD<br>INIT               | REG<br>INIT                      | REG<br>INIT                | REG                           | REG                              | REG<br>INIT                   | REG<br>REANL                   | REG                           | REG<br>INIT                 |
| Parameter                                                                                          | Result Unit                      | Result                           | Result                        | Result                   | Result                            | Result                   | Result                           | Result                     | Result                        | Result                           | Result                        | Result                         | Result                        | Result                      |
| 1,1,1,2-Tetrachloroethane<br>1,1,1-Trichloroethane (TCA)                                           | μg/L<br>μg/L                     | ND 2 H                           | ND 5<br>290                   | ND 5<br>290              | ND 10<br>410                      | ND 10<br>410             | ND 5<br>ND 5                     | ND 1<br>ND 1               | ND 10<br>ND 10                | ND 2<br>ND 2                     | ND 10<br>ND 17                | ND 5 H<br>ND 8.5 H             | ND 10<br>ND 17                | ND 5<br>ND 8.5              |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane                                                 | μg/L<br>μg/L                     | ND 2 H<br>ND 2.2 H               | ND 5<br>ND 5.5                | ND 5<br>ND 5.5           | ND 10<br>ND 11                    | ND 10<br>ND 11           | ND 5<br>ND 5                     | ND 1<br>ND 1               | ND 10<br>ND 10                | ND 2.2<br>ND 2.4                 | ND 10<br>ND 11                | ND 5 H<br>ND 5.5 H             | ND 10<br>ND 11                | ND 5.5                      |
| 1,1,2-Trichlorotrifluoroethane (CFC 113) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE) | μg/L<br>μg/L<br>μg/L             | ND 2.4 H<br>84 H<br>40 H         | ND 6<br>77<br>26              | ND 6<br>79<br>25         | ND 12<br>98<br>47 J               | ND 12<br>94<br>31 J      | 17<br>7.4<br>ND 5                | 1.1<br>29<br>ND 1          | ND 10<br>45<br>ND 10          | ND 3.4<br>23<br>ND 2.6           | ND 12<br>29 J<br>ND 13        | ND 6 H<br>26 H<br>ND 6.5 H     | ND 12<br>27 J<br>ND 13        | ND 6<br>20 J<br>ND 6,5      |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene                                                         | μg/L<br>μg/L                     | ND 2.4 H<br>ND 8 H               | ND 6<br>ND 20                 | ND 6<br>ND 20            | ND 12<br>ND 40                    | ND 12<br>ND 40           | ND 5<br>ND 10                    | ND 1<br>ND 2               | ND 10<br>ND 20                | ND 2.4<br>ND 8                   | ND 12<br>ND 40                | ND 6 H<br>ND 20 H              | ND 13<br>ND 12<br>ND 40       | ND 6<br>ND 20               |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene                                                   | μg/L<br>μg/L                     | ND 2.6 H<br>ND 5 H<br>ND 6.4 H   | ND 6.5<br>ND 13<br>ND 16      | ND 6.5<br>ND 13<br>ND 16 | ND 13<br>ND 25<br>ND 32           | ND 13<br>ND 25<br>ND 32  | ND 10<br>ND 10<br>ND 10          | ND 2<br>ND 2<br>ND 2       | ND 20<br>ND 20<br>ND 20       | ND 2.6<br>ND 5<br>ND 6.4         | ND 13<br>ND 25<br>ND 32       | ND 6.5 H<br>ND 13 H<br>ND 16 H | ND 13<br>ND 25<br>ND 32       | ND 6.5<br>ND 13<br>ND 16    |
| 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)                  | μg/L<br>μg/L<br>μg/L             | ND 4 H<br>ND 2.4 H               | ND 10<br>ND 6                 | ND 10<br>ND 10           | ND 20<br>ND 12                    | ND 20<br>ND 12           | ND 10<br>ND 5                    | ND 2<br>ND 1               | ND 20<br>ND 10                | ND 4<br>ND 2.4                   | ND 20<br>ND 12                | ND 10 H<br>ND 6 H              | ND 20<br>ND 12                | ND 10<br>ND 6               |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane<br>1,2-Dichloropropane                                   | μg/L<br>μg/L<br>μg/L             | 3.9 J,H<br>ND 2.8 H<br>ND 3 H    | ND 4.9<br>ND 7<br>ND 7.5      | ND 4.9<br>ND 7<br>ND 7.5 | ND 9.7<br>ND 14<br>ND 15          | ND 9.7<br>ND 14<br>ND 15 | ND 5<br>ND 5<br>ND 5             | 3<br>ND 1<br>ND 1          | ND 10<br>ND 10<br>ND 10       | 2.2 J<br>ND 2.8<br>ND 3          | ND 9.7<br>ND 14<br>ND 15      | ND 4.9 H<br>ND 7 H<br>ND 7.5 H | ND 9.7<br>ND 14<br>ND 15      | ND 4.9<br>17 J<br>ND 7.5    |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene                                                      | μg/L<br>μg/L                     | ND 3.2 H<br>ND 1.7 H             | ND 8<br>ND 4.3                | ND 8<br>ND 4.3           | ND 16<br>ND 8.6                   | ND 16<br>ND 8.6          | ND 5<br>ND 5                     | ND 1<br>ND 1               | ND 10<br>ND 10                | ND 3.2<br>ND 1.7                 | ND 16<br>ND 8.6               | ND 8 H<br>ND 4.3 H             | ND 16<br>ND 8.6               | ND 8<br>ND 4.3              |
| 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane                                        | μg/L<br>μg/L<br>μg/L             | ND 2 H<br>ND 1.7 H<br>ND 9.2 H   | ND 5<br>ND 4.2<br>ND 23       | ND 5<br>ND 4.2<br>ND 23  | ND 10<br>ND 8.3<br>ND 46          | ND 10<br>ND 8.3<br>ND 46 | ND 10<br>ND 5<br>ND 10           | ND 2<br>ND 1<br>ND 2       | ND 20<br>ND 10<br>ND 20       | ND 2<br>ND 1.7<br>ND 9.2         | ND 10<br>ND 8.3<br>ND 46      | ND 5 H<br>ND 4.2 H<br>ND 23 H  | ND 10<br>ND 8.3<br>ND 46      | ND 5<br>ND 4.2<br>ND 23     |
| 2-Butanone (MEK)<br>2-Chlorotoluene                                                                | μg/L<br>μg/L                     | ND 6.6 H<br>ND 2.2 H             | ND 17<br>ND 5.5               | ND 17<br>ND 5.5          | ND 33<br>ND 11                    | ND 33<br>ND 11           | ND 20<br>ND 5                    | 4.4<br>ND 1                | ND 40<br>ND 10                | ND 6.6<br>ND 2.2                 | ND 33<br>ND 11                | ND 17 H<br>ND 5.5 H            | ND 33<br>ND 11                | ND 17<br>ND 5.5             |
| 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene                                                      | μg/L<br>μg/L<br>μg/L             | ND 3.4 H<br>ND 2 H<br>ND 3 H     | ND 8.5<br>ND 5<br>ND 7.5      | ND 8.5<br>ND 5<br>ND 7.5 | ND 17<br>ND 10<br>ND 15           | ND 17<br>ND 10<br>ND 15  | ND 20<br>ND 5<br>ND 10           | ND 4<br>ND 1<br>ND 2       | ND 40<br>ND 10<br>ND 20       | ND 3.4<br>ND 2<br>ND 3           | ND 17<br>ND 10<br>ND 15       | ND 8.5 H<br>ND 5 H<br>ND 7.5 H | ND 17<br>ND 10<br>ND 15       | ND 8.5<br>ND 5<br>ND 7.5    |
| Acetone Benzene                                                                                    | μg/L<br>μg/L                     | ND 76 H<br>ND 1.6 H              | ND 190<br>ND 4                | ND 190<br>ND 4           | ND 380<br>ND 8                    | ND 380<br>ND 8           | ND 100<br>ND 5                   | 20<br>ND 1                 | ND 200<br>ND 10               | ND 76<br>ND 1.6                  | ND 380<br>ND 8                | ND 190 H<br>ND 4 H             | ND 380<br>ND 8                | ND 190<br>ND 4              |
| Bromobenzene Bromochloromethane Bromodichloromethane                                               | μg/L<br>μg/L<br>μg/L             | ND 1.8 H<br>ND 3.6 H<br>ND 2.8 H | ND 4.6<br>ND 9<br>ND 7        | ND 4.6<br>ND 9<br>ND 7   | ND 9.1<br>ND 18<br>ND 14          | ND 9.1<br>ND 18<br>ND 14 | ND 10<br>ND 10<br>ND 5           | ND 2<br>ND 2<br>ND 1       | ND 20<br>ND 20<br>ND 10       | ND 1.8<br>ND 3.6<br>ND 2.8       | ND 9.1<br>ND 18<br>ND 14      | ND 4.6 H<br>ND 9 H<br>ND 7 H   | ND 9.1<br>ND 18<br>ND 14      | ND 4.6<br>ND 9<br>ND 7      |
| Bromoform Bromomethane                                                                             | μg/L<br>μg/L                     | ND 3.8 H<br>ND 4.2 H             | ND 9.5<br>ND 11               | ND 9.5<br>ND 11          | ND 19<br>ND 21                    | ND 19<br>ND 21           | ND 10<br>ND 10                   | ND 2<br>ND 2               | ND 20<br>ND 20                | ND 3.8 *+<br>ND 4.2              | ND 19<br>ND 21                | ND 9.5 H<br>ND 11 H            | ND 19<br>ND 21                | ND 9.5<br>ND 11             |
| Carbon Disulfide Carbon Tetrachloride Chlorobenzene                                                | μg/L<br>μg/L<br>μg/L             | ND 7.2 H<br>ND 2.4 H<br>ND 1.4 H | ND 18<br>ND 6<br>ND 3.5       | ND 18<br>ND 6<br>ND 3.5  | ND 36<br>ND 12<br>ND 7            | ND 36<br>ND 12<br>ND 7   | ND 20<br>ND 5<br>ND 5            | ND 4<br>ND 1<br>ND 1       | ND 40<br>ND 10<br>ND 10       | ND 7.2<br>ND 2.4<br>ND 1.4       | ND 36<br>ND 12<br>ND 7        | ND 18 H<br>ND 6 H<br>ND 3.5 H  | ND 36<br>ND 12<br>ND 7        | ND 18<br>ND 6<br>ND 3.5     |
| Chloroethane<br>Chloroform                                                                         | μg/L<br>μg/L<br>μg/L             | ND 4.8 H<br>ND 2.4 H             | ND 12<br>ND 6                 | ND 12<br>ND 6            | ND 24<br>ND 12                    | ND 24<br>ND 12           | 16<br>ND 10                      | ND 2<br>ND 2               | ND 20<br>ND 20                | ND 4.8<br>ND 2.4                 | ND 24<br>ND 12                | ND 12 H<br>ND 6 H              | ND 24<br>ND 12                | ND 12<br>ND 6               |
| Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene                                       | μg/L<br>μg/L                     | ND 5.2 H<br>3900 H<br>ND 3 H     | ND 13<br>2400<br>ND 7.5       | ND 13<br>2400<br>ND 7.5  | ND 26<br>4500<br>ND 15            | ND 26<br>3500<br>ND 15   | ND 10<br>410<br>ND 5             | ND 2<br>9.2<br>ND 1        | ND 20<br>690<br>ND 10         | ND 5.2<br>740<br>ND 3            | ND 26<br>3900<br>ND 15        | ND 13 H<br><br>ND 7.5 H        | ND 26<br>3300<br>ND 15        | ND 13<br>2000<br>ND 7.5     |
| Dibromochloromethane<br>Dibromomethane                                                             | μg/L<br>μg/L<br>μg/L             | ND 3.2 H<br>ND 3.4 H             | ND 8<br>ND 8.5                | ND 8<br>ND 8.5           | ND 16<br>ND 17                    | ND 16<br>ND 17           | ND 5<br>ND 5                     | ND 1<br>ND 1               | ND 10<br>ND 10                | ND 3.2<br>ND 3.4                 | ND 16<br>ND 17                | ND 8 H<br>ND 8.5 H             | ND 16<br>ND 17                | ND 8<br>ND 8.5              |
| Dichlorodifluoromethane (CFC 12) Ethylbenzene Hexachlorobutadiene                                  | µg/L<br>µg/L                     | 210 H<br>ND 1.7 H<br>ND 4.6 H    | ND 16<br>ND 4.2<br>ND 12      | ND 16<br>ND 4.2<br>ND 12 | ND 32<br>ND 8.4<br>ND 23          | ND 32<br>ND 8.4<br>ND 23 | 12<br>ND 5<br>ND 10              | ND 2<br>ND 1<br>ND 2       | ND 20<br>ND 10<br>ND 20       | ND 6.4<br>ND 1.7<br>ND 4.6 *+    | ND 32<br>ND 8.4<br>ND 23      | ND 16 H<br>ND 4.2 H<br>ND 12 H | ND 32<br>ND 8.4<br>ND 23      | ND 16<br>ND 4.2<br>ND 12    |
| Isopropylbenzene Methyl Isobutyl Ketone                                                            | μg/L<br>μg/L<br>μg/L             | ND 2.2 H<br>ND 2.2 H             | ND 5.5<br>ND 5.5              | ND 5.5<br>ND 5.5         | ND 11<br>ND 11                    | ND 11<br>ND 11           | ND 10<br>ND 5<br>ND 20           | ND 1<br>ND 4               | ND 10<br>ND 40                | ND 4.6 *+<br>ND 2.2<br>ND 2.2    | ND 11<br>ND 11                | ND 5.5 H<br>ND 5.5 H           | ND 11<br>ND 11                | ND 5.5<br>ND 5.5            |
| Methylene Chloride<br>MTBE                                                                         | μg/L<br>μg/L                     | ND 3.2 H<br>ND 2.4 H             | ND 8<br>ND 6                  | ND 8<br>ND 6             | ND 16<br>ND 12                    | ND 16<br>ND 12           | ND 10<br>ND 5                    | ND 2<br>ND 1               | ND 20<br>ND 10                | ND 3.2<br>ND 2.4                 | ND 16<br>ND 12                | 21 J,H,B<br>ND 6 H             | ND 16<br>ND 12                | ND 8<br>ND 6                |
| Naphthalene n-Butylbenzene n-Propylbenzene                                                         | μg/L<br>μg/L<br>μg/L             | ND 9.6 H<br>ND 3.6 H<br>ND 2.2 H | ND 24<br>ND 9<br>ND 5.5       | ND 24<br>ND 9<br>ND 5.5  | ND 48<br>ND 18<br>ND 11           | ND 48<br>ND 18<br>ND 11  | ND 10<br>ND 10<br>ND 10          | ND 2<br>ND 2<br>ND 2       | ND 20<br>ND 20<br>ND 20       | ND 9.6<br>ND 3.6<br>ND 2.2       | ND 48<br>ND 18<br>ND 11       | ND 24 H<br>ND 9 H<br>ND 5.5 H  | ND 48<br>ND 18<br>ND 11       | ND 24<br>ND 9<br>ND 5.5     |
| sec-Butylbenzene<br>Styrene                                                                        | μg/L<br>μg/L                     | ND 2.8 H<br>ND 2.6 H             | ND 7<br>ND 6.5                | ND 7<br>ND 6.5           | ND 14<br>ND 13                    | ND 14<br>ND 13           | ND 10<br>ND 5                    | ND 2<br>ND 1               | ND 20<br>ND 10                | ND 2.8<br>ND 2.6                 | ND 14<br>ND 13                | ND 7 H<br>ND 6.5 H             | ND 14<br>ND 13                | ND 7<br>ND 6.5              |
| tert-Butylbenzene Tetrachloroethene (PCE) Toluene                                                  | μg/L<br>μg/L<br>μg/L             | ND 2.6 H<br>ND 2 H<br>2.1 J,H    | ND 6.5<br>ND 5<br>ND 4.8      | ND 6.5<br>ND 5<br>ND 4.8 | ND 13<br>ND 10<br>ND 9.5          | ND 13<br>ND 10<br>ND 9.5 | ND 10<br>ND 5<br>ND 5            | ND 2<br>ND 1<br>ND 1       | ND 20<br>ND 10<br>ND 10       | ND 2.6<br>ND 2<br>ND 1.9         | ND 13<br>ND 10<br>ND 9.5      | ND 6.5 H<br>ND 5 H<br>ND 4.8 H | ND 13<br>ND 10<br>ND 9.5      | ND 6.5<br>ND 5<br>ND 4.8    |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene                                              | μg/L<br>μg/L                     | 29 H<br>ND 3.2 H                 | 26<br>ND 8                    | 27<br>ND 8               | 33 J<br>ND 16                     | 31 J<br>ND 16            | 7.6<br>ND 5                      | 14<br>ND 1                 | 15<br>ND 10                   | 13<br>ND 3.2                     | 17 J<br>ND 16                 | 15 J,H<br>ND 8 H               | ND 11<br>ND 16                | 11 J<br>ND 8                |
| Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                | μg/L<br>μg/L<br>μg/L             | 16 H<br>ND 2.6 H<br>ND 3.8 H     | 88<br>ND 6.5<br>ND 9.5        | 86<br>ND 6.5<br>ND 9.5   | ND 10<br>ND 13<br>ND 19           | ND 10<br>ND 13<br>ND 19  | 17<br>ND 10<br>ND 20             | 1.2<br>ND 2<br>ND 4        | ND 10<br>ND 20<br>ND 40       | 6.6 J<br>ND 2.6<br>ND 3.8        | 24 J<br>ND 13<br>ND 19        | 14 J,H<br>ND 6.5 H<br>ND 9.5 H | 20 J<br>ND 13<br>ND 19        | 12 J<br>ND 6.5<br>ND 9.5    |
| Vinyl Chloride<br>Xylenes, Total                                                                   | μg/L<br>μg/L                     | 2900 H<br>ND 5.4 H               | 990<br>ND 14                  | 1000<br>ND 14            | 2000<br>ND 27                     | 1800<br>ND 27            | 310<br>ND 5                      | 140<br>ND 1                | 660<br>ND 10                  | 480<br>ND 5.4                    | 610<br>ND 27                  | 530 H<br>ND 14 H               | 570<br>ND 27                  | 580<br>ND 14                |
| Total Organic Carbon                                                                               | mg/L                             | 40                               | 41                            | 5 <b>A</b><br>41         | 15310C - 101/<br>18               | 22                       | 2.0                              | 94                         | 68                            | 22                               | 5.4                           |                                | 4.9                           | 3.2                         |
| Sulfide                                                                                            | mg/L                             | 5.9                              | 2.1                           | 2.4                      | 1.9                               | 1.9<br>ALKALINITY        | ND 0.1                           | 0.81                       | 1.4 H                         | 0.39                             | ND 0.022                      |                                | ND 0.022                      | 0.11 F2,F1                  |
| Bicarbonate Alkalinity  Carbonate Hydroxide                                                        | mg/L<br>mg/L                     | 410<br>ND 5                      | 410<br>ND 5                   | 410<br>ND 5              | 420<br>ND 5                       | 430<br>ND 5              | 430<br>ND 5                      | 660<br>ND 5                | 750<br>ND 5                   | 890<br>ND 5                      | 760<br>ND 5                   |                                | 810<br>ND 5                   | 600<br>ND 5                 |
| Hydroxide Alkalinity<br>Total Alkalinity                                                           | mg/L<br>mg/L                     | ND 5<br>410                      | ND 5<br>410                   | ND 5<br>410              | ND 5<br>420                       | ND 5<br>430              | ND 5<br>430                      | ND 5<br>660                | ND 5<br>750                   | ND 5<br>890                      | ND 5<br>760                   |                                | ND 5<br>810                   | ND 5<br>600                 |
| Nitrate<br>Sulfate                                                                                 | mg/L                             | ND 0.1                           | ND 0.5                        | ND 0.5<br>4.3 J          | PA 300.0 - NIT<br>ND 0.5<br>1.9 J | ND 0.5                   | ND 1.3 ,H<br>190                 | ND 1.3                     | ND 1.3<br>8.8                 | ND 0.88                          | ND 0.5                        |                                | ND 0.5                        | ND 0.5                      |
| Arsenic                                                                                            | mg/L<br>μg/L                     | 6.3 ]                            | 4.4.)                         |                          | 4 200.7 - ARSE                    |                          |                                  |                            | ND 15                         | 34                               | 43                            |                                | 63                            | 44 J.H                      |
| Manganese                                                                                          | µg/L                             | 950                              | 9100                          | 1700                     | 1400 H                            | 1600 H<br>- HYDROGEN     |                                  |                            | 6100                          | 6900                             | 5200                          |                                | 4300 B                        | 4000 H                      |
| Hydrogen                                                                                           | nM                               | 3.9                              | 2.0                           |                          | 2.5<br><b>AM23G = VOL</b> A       | THE FATTY AC             | 2.2<br><b>7DS</b>                | 3.1                        | 1.2 J                         | 1.2 J                            | 4.2                           |                                | 0.96 J                        | 1.2 J                       |
| 4-Methylpentanoic Acid<br>Acetic Acid<br>Butyric Acid                                              | mg/L<br>mg/L<br>mg/L             | ND 0.056<br>75<br>2.1            | ND 0.56<br>83<br>3.3 J        |                          | ND 0.56<br>20<br>ND 0.58          |                          | ND 0.056<br>0.61<br>ND 0.058     | <br>180<br>4.8             | ND 0.056<br>130<br>4.4        | ND 0.056<br>29<br>0.53           | ND 0.11<br>0.37 J<br>ND 0.12  |                                | ND 0.56<br>6<br>ND 0.58       | ND 0.56<br>2.2 J<br>ND 0.58 |
| Formic Acid i-Hexanoic Acid                                                                        | mg/L<br>mg/L                     | 6.9<br>0.18 J                    | 54<br>ND 0.58                 |                          | 52<br>ND 0.58                     |                          | 4.8<br>ND 0.058                  | 0.89<br>ND 0.056           | 0.59<br>0.11 J                | 5<br>ND 0.058                    | 11<br>ND 0.12                 |                                | 52<br>ND 0.58                 | 49<br>ND 0.58               |
| Isopentanoic Acid Lactic Acid Pentanoic Acid                                                       | mg/L<br>mg/L<br>mg/L             | ND 0.061<br>ND 0.053<br>ND 0.056 | ND 0.61<br>ND 0.53<br>ND 0.56 |                          | ND 0.61<br>5<br>ND 0.56           |                          | ND 0.061<br>ND 0.053<br>ND 0.056 | 0.36 J<br>ND 1.1<br>0.34 J | 0.081 J<br>ND 1.1<br>ND 0.056 | ND 0.061<br>ND 0.053<br>ND 0.056 | ND 0.12<br>ND 0.11<br>ND 0.11 |                                | ND 0.61<br>ND 0.53<br>ND 0.56 | ND 0.61<br>54<br>ND 0.56    |
| Propionic Acid  Pyruvic Acid                                                                       | mg/L<br>mg/L                     | 0.86<br>ND 0.06                  | 1 J<br>ND 0.6                 |                          | ND 0.53<br>ND 0.6                 |                          | 0.091 J<br>ND 0.06               | 5.5 J<br>0.29 J            | 3.4<br>0.072 J                | 1.3<br>ND 0.06                   | ND 0.11<br>ND 0.12            |                                | 0.67 J<br>ND 0.6              | ND 0.53<br>ND 0.6           |
| Carbon Dioxide                                                                                     | mg/L                             | 56                               | 85.1                          |                          | 84.7                              | SSOLVED GASE             | 78.7                             | 97                         | 99.2                          |                                  | 108                           |                                | 6.83                          | 121                         |
| Ethane Ethene Methane                                                                              | mg/L<br>mg/L<br>mg/L             | 0.012<br>2<br>4.5                | 0.012<br>2<br>6.3             |                          | 0.014<br>2.4<br>5.6               |                          | 0.0028<br>0.072<br>8.1           | 0.0063<br>1.5<br>8.7       | 0.0041<br>1.4<br>14           | 0.0034<br>1.3<br>13              | 0.006<br>0.73<br>7.6          |                                | 0.0088<br>0.76<br>6.8         | 0.01<br>0.61<br>7.6         |
| APS                                                                                                | Cells/mL                         |                                  | 371000                        |                          | <u> </u>                          | hior - MICROB            | 70900                            |                            |                               | 311000                           |                               |                                | 221000                        | 283000                      |
| BVC<br>CER                                                                                         | Cells/mL<br>Cells/mL             |                                  | <0.6<br>183                   |                          | <0.5<br>39.2                      |                          | < 0.5<br>1710                    |                            |                               | <0.9<br>688                      |                               |                                | <0.5<br>3380                  | <0.5<br>1040                |
| CFR DCA DCAR                                                                                       | Cells/mL<br>Cells/mL<br>Cells/mL |                                  | <5.7<br><5.7<br><5.7          |                          | <5.2<br><5.2<br><5.2              |                          | < 4.6<br>< 4.6<br>< 4.6          |                            |                               | <9.3<br><9.3<br><9.3             |                               |                                | <4.6<br><4.6<br><4.6          | <4.8<br><4.8<br><4.8        |
| DCM<br>DCMA                                                                                        | Cells/mL<br>Cells/mL             |                                  | <5.7<br><5.7                  |                          | <5.2<br><5.2                      |                          | < 4.6<br>< 4.6                   |                            |                               | <9.3<br><9.3                     |                               |                                | 504<br><4.6                   | 1950<br><4.8                |
| DHBt DHC                                                                                           | Cells/mL<br>Cells/mL<br>Cells/mL |                                  | 349000<br>54500<br>738000     |                          | 23100<br>25800<br>1220000         |                          | 1010<br>1300<br>582              |                            |                               | 25200<br>44500<br>339000         |                               |                                | 5290<br>31800<br>44400        | 7650<br>60700<br>23600      |
| DHG<br>DS8                                                                                         | Cells/mL<br>Cells/mL             |                                  | 1560<br>708                   |                          | 640<br>40100                      |                          | 61900<br>3770                    |                            |                               | 10100<br>14100                   |                               |                                | 57200<br>75400                | 48600<br>99800              |
| DSM EBAC EtnC                                                                                      | Cells/mL<br>Cells/mL<br>Cells/mL |                                  | 1020<br>15500000<br>30.3      |                          | <5.2<br>5780000<br>31.8           |                          | < 4.6<br>2050000<br>275          |                            |                               | 39700<br>21400000<br>165         |                               |                                | 126<br>12800000<br>2000       | <4.8<br>7130000<br>235      |
| EtnE<br>MGN                                                                                        | Cells/mL<br>Cells/mL             |                                  | <5.7<br>23300                 |                          | <5.2<br>17900                     |                          | 474<br>383                       |                            |                               | <9.3<br>27700                    |                               |                                | 3800<br>8510                  | 652<br>27500                |
| PCE-1<br>PCE-2<br>PHE                                                                              | Cells/mL<br>Cells/mL<br>Cells/mL |                                  | 2980<br>637<br>23400          |                          | 1400<br>4720<br>4390              |                          | < 4.6<br>52.8<br>24.5            |                            |                               | <9.3<br><9.3<br>1200             |                               |                                | <4.6<br><4.6<br>48            | <4.8<br>187<br>66.1         |
| RDEG<br>RMO                                                                                        | Cells/mL<br>Cells/mL             |                                  | 23800<br><5.7                 |                          | 7370<br><5.2                      |                          | < 4.6<br>< 4.6                   |                            |                               | 4540<br>8810                     |                               |                                | 424<br><4.6                   | 422<br><4.8                 |
| SMMO<br>TCBO<br>TCE                                                                                | Cells/mL<br>Cells/mL<br>Cells/mL |                                  | 1630<br><5.7<br>107000        |                          | 699<br><5.2<br>225000             |                          | 1690<br>< 4.6<br>158             |                            |                               | 2360<br><9.3<br>78600            |                               |                                | 652<br><4.6<br>7510           | 1100<br><4.8<br>5460        |
| TDR<br>TOD                                                                                         | Cells/mL<br>Cells/mL             |                                  | <5.7<br><5.7                  |                          | <5.2<br><5.2                      |                          | < 4.6<br>38.1                    |                            |                               | <9.3<br><9.3                     |                               |                                | <4.6<br><4.6                  | <4.8<br><4.8                |
| VCR                                                                                                | Cells/mL                         |                                  | 30900                         |                          | 71600                             |                          | 115                              |                            |                               | 36300                            |                               |                                | 3620                          | 4150                        |



| Location ID<br>Sample Date                                                     |                                  | S140A<br>9/16/20                | S140A<br>12/18/20             | S140A<br>1/20/21                 | S140A<br>2/17/21                  | S140A<br>5/17/21                 | S140A<br>8/19/21              | S140A                        | S141A<br>9/15/20                 | S141A<br>12/16/20            | S141A<br>1/19/21               | S141A<br>2/16/21              | S141A<br>5/19/21                    | S141A<br>8/18/21              |
|--------------------------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------------|-------------------------------|
| Sample Purpose                                                                 |                                  | REG                             | REG                           | REG                              | REG                               | REG                              | REG                           | REG                          | REG                              | REG                          | REG                            | REG                           | REG                                 | REG                           |
| Analysis Type Parameter                                                        | Result Unit                      | INIT<br>Result                  | INIT<br>Result                | INIT<br>Result                   | INIT<br>Result                    | INIT<br>Result                   | INIT<br>Result                | INIT<br>Result               | INIT<br>Result                   | INIT<br>Result               | INIT<br>Result                 | INIT<br>Result                | INIT<br>Result                      | INIT<br>Result                |
| 1,1,1,2-Tetrachloroethane                                                      | μg/L                             | ND 1000                         | ND 500                        |                                  |                                   | E ORGANIC CC                     | MPCUNDS<br>ND 100             | ND 200                       | ND 25                            | ND 25                        | ND 25                          | ND 2.5                        | ND 0.2 H                            | ND 2                          |
| 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane    | μg/L<br>μg/L<br>μg/L             | ND 1000<br>ND 1000<br>ND 1000   | ND 500<br>ND 500<br>ND 500    | ND 1300<br>ND 1300<br>ND 1300    | ND 100<br>ND 110<br>ND 120        | 740 H<br>ND 40 H<br>ND 44 H      | 660<br>ND 100<br>ND 110       | 630 J<br>ND 200<br>ND 220    | ND 25<br>ND 25<br>ND 25          | ND 25<br>ND 25<br>ND 25      | ND 25<br>ND 25<br>ND 25        | ND 2.5<br>ND 2.8<br>ND 3      | 120 H<br>2 H<br>ND 0.22 H           | 120<br>ND 2<br>ND 2.2         |
| 1,1,2-Trichlorotrifluoroethane (CFC 113)<br>1,1-Dichloroethane (1,1-DCA)       | μg/L<br>μg/L                     | ND 1000<br>ND 1000              | 980<br>ND 500                 | ND 1300<br>ND 1300               | 740<br>390 J                      | ND 48 H<br>430 H                 | ND 120<br>340 J               | ND 240<br>340 J              | 240<br>ND 25                     | 72<br>ND 25                  | 48<br>ND 25                    | 22<br>10 J                    | ND 0.24 H                           | ND 2.4<br>5.1 J               |
| 1,1-Dichloroethene (1,1-DCE) 1,1-Dichloropropene 1,2,3-Trichlorobenzene        | µg/L<br>µg/L<br>µg/L             | ND 1000<br>ND 1000<br>ND 2000   | ND 500<br>ND 500<br>ND 1000   | ND 1300<br>ND 1300<br>ND 2500    | 360 J<br>ND 120<br>ND 400         | 380 H<br>ND 48 H<br>ND 160 H     | 340 J<br>ND 120<br>ND 400     | ND 260<br>ND 240<br>ND 800   | ND 25<br>ND 25<br>ND 50          | ND 25<br>ND 25<br>ND 50      | ND 25<br>ND 25<br>ND 50        | ND 3.3<br>ND 3<br>ND 10       | 4 H<br>ND 0.24 H<br>ND 0.8 H        | ND 2.6<br>ND 2.4<br>ND 8      |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene           | μg/L<br>μg/L<br>μg/L             | ND 2000<br>ND 2000<br>ND 2000   | ND 1000<br>ND 1000<br>ND 1000 | ND 2500<br>ND 2500<br>ND 2500    | ND 130<br>ND 250<br>ND 320        | ND 52 H<br>ND 100 H<br>ND 130 H  | ND 130<br>ND 250<br>ND 320    | ND 260<br>ND 500<br>ND 640   | ND 50<br>ND 50<br>ND 50          | ND 50<br>ND 50<br>ND 50      | ND 50<br>ND 50<br>ND 50        | ND 3.3<br>ND 6.3<br>ND 8      | ND 0.26 H<br>ND 0.5 H<br>ND 0.64 H  | ND 2.6<br>ND 5<br>ND 6.4      |
| 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene | µg/L<br>µg/L<br>µg/L             | ND 2000<br>ND 1000<br>ND 1000   | ND 1000<br>ND 500<br>ND 500   | ND 2500 °+<br>ND 1300<br>ND 1300 | ND 200<br>ND 120<br>ND 97         | ND 80 H<br>ND 48 H<br>ND 39 H    | ND 200<br>ND 120<br>ND 97     | ND 400<br>ND 240<br>ND 190   | ND 50<br>ND 25<br>ND 25          | ND 50<br>ND 25<br>ND 25      | ND 50<br>ND 25<br>ND 25        | ND 5<br>ND 3<br>ND 2.4        | ND 0.4 H<br>ND 0.24 H<br>0.49 J,H   | ND 4<br>ND 2.4<br>ND 1.9      |
| 1,2-Dichloroethane<br>1,2-Dichloropropane                                      | μg/L<br>μg/L                     | ND 1000<br>ND 1000              | ND 500<br>ND 500<br>ND 500    | ND 1300<br>ND 1300               | ND 140<br>ND 150<br>ND 160        | ND 56 H<br>ND 60 H               | ND 140<br>ND 150<br>ND 160    | ND 280<br>ND 300             | ND 25<br>ND 25<br>ND 25          | ND 25<br>ND 25               | ND 25<br>ND 25                 | ND 3.5<br>ND 3.8              | ND 0.28 H<br>ND 0.3 H               | ND 2.8<br>ND 3                |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene<br>1,3-Dichloropropane           | µg/L<br>µg/L<br>µg/L             | ND 1000<br>ND 1000<br>ND 2000   | ND 500<br>ND 1000             | ND 1300<br>ND 1300<br>ND 2500    | ND 86<br>ND 100                   | ND 64 H<br>ND 34 H<br>ND 40 H    | ND 86<br>ND 100               | ND 320<br>ND 170<br>ND 200   | ND 25<br>ND 50                   | ND 25<br>ND 25<br>ND 50      | ND 25<br>ND 25<br>ND 50        | ND 4<br>ND 2.2<br>ND 2.5      | ND 0.32 H<br>ND 0.17 H<br>ND 0.2 H  | ND 3.2<br>ND 1.7<br>ND 2      |
| 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK)                       | μg/L<br>μg/L<br>μg/L             | ND 1000<br>ND 2000<br>ND 4000   | ND 500<br>ND 1000<br>ND 2000  | ND 1300<br>ND 2500<br>ND 5000    | ND 83<br>ND 460<br>ND 330         | ND 33 H<br>ND 180 H<br>ND 130 H  | ND 83<br>ND 460<br>ND 330     | ND 170<br>ND 920<br>ND 660   | ND 25<br>ND 50<br>ND 100         | ND 25<br>ND 50<br>ND 100     | ND 25<br>ND 50<br>ND 100       | ND 2.1<br>ND 12<br>ND 8.3     | ND 0.17 H<br>ND 0.92 H<br>ND 0.66 H | ND 1.7<br>ND 9.2<br>ND 6.6    |
| 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene                                     | µg/L<br>µg/L<br>µg/L             | ND 1000<br>ND 4000<br>ND 1000   | ND 500<br>ND 2000<br>ND 500   | ND 1300<br>ND 5000<br>ND 1300    | ND 110<br>ND 170<br>ND 100        | ND 44 H<br>ND 68 H<br>ND 40 H    | ND 110<br>ND 170<br>ND 100    | ND 220<br>ND 340<br>ND 200   | ND 25<br>ND 100<br>ND 25         | ND 25<br>ND 100<br>ND 25     | ND 25<br>ND 100<br>ND 25       | ND 2.8<br>ND 4.3<br>ND 2.5    | ND 0.22 H<br>ND 0.34 H<br>ND 0.2 H  | ND 2.2<br>ND 3.4<br>ND 2      |
| 4-Isopropyltoluene<br>Acetone<br>Benzene                                       | µg/L<br>µg/L<br>µg/L             | ND 2000<br>ND 20000<br>ND 1000  | ND 1000<br>ND 10000<br>ND 500 | ND 2500<br>ND 25000<br>ND 1300   | ND 150<br>ND 3800<br>ND 80        | ND 60 H<br>ND 1500 H<br>ND 32 H  | ND 150<br>ND 3800<br>ND 80    | ND 300<br>ND 7600<br>ND 160  | ND 50<br>ND 500<br>ND 25         | ND 50<br>ND 500<br>ND 25     | ND 50<br>ND 500<br>ND 25       | ND 3.8<br>ND 95<br>ND 2       | ND 0.3 H<br>ND 7.6 H<br>ND 0.16 H   | ND 3<br>ND 76<br>ND 1.6       |
| Bromobenzene Bromochloromethane Bromodichloromethane                           | μg/L<br>μg/L                     | ND 2000<br>ND 2000<br>ND 1000   | ND 1000<br>ND 1000<br>ND 500  | ND 2500<br>ND 2500<br>ND 1300    | ND 91<br>ND 180<br>ND 140         | ND 36 H<br>ND 72 H<br>ND 56 H    | ND 91<br>ND 180<br>ND 140     | ND 180<br>ND 360<br>ND 280   | ND 50<br>ND 50<br>ND 25          | ND 50<br>ND 50<br>ND 25      | ND 50<br>ND 50<br>ND 25        | ND 2.3<br>ND 4.5<br>ND 3.5    | ND 0.18 H<br>ND 0.36 H<br>ND 0.28 H | ND 1.8<br>ND 3.6<br>ND 2.8    |
| Bromoform<br>Bromomethane                                                      | μg/L<br>μg/L<br>μg/L             | ND 2000<br>ND 2000              | ND 1000<br>ND 1000            | ND 2500<br>ND 2500               | ND 190<br>ND 210                  | ND 76 H<br>ND 84 H               | ND 190<br>ND 210              | ND 380<br>ND 420             | ND 50<br>ND 50                   | ND 50<br>ND 50               | ND 50<br>ND 50                 | ND 4.8 *+<br>ND 5.3           | ND 0.38 H<br>ND 0.42 H              | ND 3.8<br>ND 4.2              |
| Carbon Disulfide<br>Carbon Tetrachloride<br>Chlorobenzene                      | μg/L<br>μg/L<br>μg/L             | ND 4000<br>ND 1000<br>ND 1000   | ND 2000<br>ND 500<br>ND 500   | ND 5000<br>ND 1300<br>ND 1300    | ND 360<br>ND 120<br>ND 70         | ND 140 H<br>ND 48 H<br>ND 28 H   | ND 360<br>ND 120<br>ND 70     | ND 720<br>ND 240<br>ND 140   | ND 100<br>ND 25<br>ND 25         | ND 100<br>ND 25<br>ND 25     | ND 100<br>ND 25<br>ND 25       | ND 9<br>ND 3<br>ND 1.8        | ND 0.72 H<br>ND 0.24 H<br>ND 0.14 H | ND 7.2<br>ND 2.4<br>ND 1.4    |
| Chloroethane<br>Chloroform<br>Chloromethane                                    | μg/L<br>μg/L<br>μg/L             | ND 2000<br>ND 2000<br>ND 2000   | ND 1000<br>ND 1000<br>ND 1000 | ND 2500<br>ND 2500<br>ND 2500    | ND 240<br>ND 120<br>ND 260        | ND 96 H<br>ND 48 H<br>ND 100 H   | ND 240<br>ND 120<br>ND 260    | ND 480<br>ND 240<br>ND 520   | ND 50<br>ND 50<br>ND 50          | ND 50<br>ND 50<br>ND 50      | ND 50<br>ND 50<br>ND 50        | ND 6<br>ND 3<br>ND 6.5        | 8.7 H<br>ND 0.24 H<br>ND 0.52 H     | 14 J<br>ND 2.4<br>ND 5.2      |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane      | μg/L<br>μg/L<br>μg/L             | 50000<br>ND 1000<br>ND 1000     | 44000<br>ND 500<br>ND 500     | 57000<br>ND 1300<br>ND 1300      | 48000<br>ND 150<br>ND 160         | 55000 H<br>ND 60 H<br>ND 64 H    | 48000<br>ND 150<br>ND 160     | 53000<br>ND 300<br>ND 320    | 560<br>ND 25<br>ND 25            | 1800<br>ND 25<br>ND 25       | 1500<br>ND 25<br>ND 25         | 1300<br>ND 3.8<br>ND 4        | 1200 H<br>ND 0.3 H<br>ND 0.32 H     | 710<br>ND 3<br>ND 3.2         |
| Dibromomethane Dichlorodifluoromethane (CFC 12) Ethylbenzene                   | μg/L<br>μg/L<br>μg/L             | ND 1000<br>ND 2000<br>ND 1000   | ND 500<br>ND 1000<br>ND 500   | ND 1300<br>ND 2500<br>ND 1300    | ND 170<br>530 J<br>ND 84          | ND 68 H<br>720 H<br>ND 34 H      | ND 170<br>ND 320<br>ND 84     | ND 340<br>ND 640<br>ND 170   | ND 25<br>ND 50<br>ND 25          | ND 25<br>ND 50<br>ND 25      | ND 25<br>ND 50<br>ND 25        | ND 4.3<br>ND 8<br>ND 2.1      | ND 0.34 H<br>12 H<br>ND 0.17 H      | ND 3.4<br>ND 6.4<br>ND 1.7    |
| Hexachlorobutadiene<br>Isopropylbenzene                                        | μg/L<br>μg/L                     | ND 2000<br>ND 1000              | ND 1000<br>ND 500             | ND 2500<br>ND 1300               | ND 230<br>ND 110                  | ND 92 H<br>ND 44 H               | ND 230<br>ND 110              | ND 460<br>ND 220             | ND 50<br>ND 25                   | ND 50<br>ND 25               | ND 50<br>ND 25                 | ND 5.8 *+<br>ND 2.8           | ND 0.46 H<br>ND 0.22 H              | ND 4.6<br>ND 2.2              |
| Methyl Isobutyl Ketone Methylene Chloride MTBE                                 | μg/L<br>μg/L<br>μg/L             | ND 4000<br>ND 2000<br>ND 1000   | ND 2000<br>ND 1000<br>ND 500  | ND 5000<br>ND 2500<br>ND 1300    | ND 110<br>ND 160<br>ND 120        | ND 44 H<br>ND 64 H<br>ND 48 H    | ND 110<br>ND 160<br>ND 120    | ND 220<br>ND 320<br>ND 240   | ND 100<br>ND 50<br>ND 25         | ND 100<br>ND 50<br>ND 25     | ND 100<br>ND 50<br>ND 25       | ND 2.8<br>ND 4<br>ND 3        | ND 0.22 H<br>ND 0.32 H<br>ND 0.24 H | ND 2.2<br>ND 3.2<br>ND 2.4    |
| Naphthalene n-Butylbenzene n-Propylbenzene                                     | µg/L<br>µg/L<br>µg/L             | ND 2000<br>ND 2000<br>ND 2000   | ND 1000<br>ND 1000<br>ND 1000 | ND 2500<br>ND 2500<br>ND 2500    | ND 480<br>ND 180<br>ND 110        | ND 190 H<br>ND 72 H<br>ND 44 H   | ND 480<br>ND 180<br>ND 110    | ND 960<br>ND 360<br>ND 220   | ND 50<br>ND 50<br>ND 50          | ND 50<br>ND 50<br>ND 50      | ND 50<br>ND 50<br>ND 50        | ND 12<br>ND 4.5<br>ND 2.8     | ND 0.96 H<br>ND 0.36 H<br>ND 0.22 H | ND 9.6<br>ND 3.6<br>ND 2.2    |
| sec-Butylbenzene Styrene tert-Butylbenzene                                     | μg/L<br>μg/L<br>μg/L             | ND 2000<br>ND 1000<br>ND 2000   | ND 1000<br>ND 500<br>ND 1000  | ND 2500<br>ND 1300<br>ND 2500    | ND 140<br>ND 130<br>ND 130        | ND 56 H<br>ND 52 H<br>ND 52 H    | ND 140<br>ND 130<br>ND 130    | ND 280<br>ND 260<br>ND 260   | ND 50<br>ND 25<br>ND 50          | ND 50<br>ND 25<br>ND 50      | ND 50<br>ND 25<br>ND 50        | ND 3.5<br>ND 3.3<br>ND 3.3    | ND 0.28 H<br>ND 0.26 H<br>ND 0.26 H | ND 2.8<br>ND 2.6<br>ND 2.6    |
| Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene                       | μg/L<br>μg/L                     | ND 1000<br>ND 1000<br>ND 1000   | ND 500<br>ND 500<br>ND 500    | ND 1300<br>ND 1300<br>ND 1300    | ND 100<br>ND 95<br>ND 110         | ND 40 H<br>ND 38 H<br>180 J.H    | ND 100<br>ND 95               | ND 200<br>ND 190<br>ND 220   | ND 25<br>ND 25<br>ND 25          | ND 25<br>ND 25<br>ND 25      | ND 25<br>ND 25<br>ND 25        | ND 2.5<br>ND 2.4<br>4.4 I     | 0.85 J,H<br>ND 0.19 H               | 2 J<br>ND 1.9<br>5.9 J        |
| trans=1,3-Dichloropropene<br>Trichloroethene (FCE)                             | μg/L<br>μg/L<br>μg/L             | ND 1000<br>15000                | ND 500<br>ND 500              | ND 1300<br>2300                  | ND 160<br>6400                    | ND 64 H<br>1600 H                | ND 160                        | ND 320<br>ND 200             | ND 25<br>1400                    | ND 25<br>260                 | ND 25<br>230                   | ND 4<br>220                   | ND 0.32 H<br>250 H                  | ND 3.2<br>730                 |
| Trichlorofluoromethane (CFC 11) Vinyl Acetate Vinyl Chloride                   | µg/L<br>µg/L<br>µg/L             | ND 2000<br>ND 4000<br>ND 1000   | ND 1000<br>ND 2000<br>3300    | ND 2500<br>ND 5000<br>2400       | ND 130<br>ND 190<br>1600          | ND 52 H<br>ND 76 H<br>1700 H     | ND 130<br>ND 190<br>2600      | ND 260<br>ND 380<br>2800     | ND 50<br>ND 100<br>25            | ND 50<br>ND 100<br>140       | ND 50<br>ND 100<br>260         | ND 3.3<br>ND 4.8<br>210       | ND 0.26 H<br>ND 0.38 H<br>150 H     | ND 2.6<br>ND 3.8<br>120       |
| Xylenes, Total  Total Organic Carbon                                           | μg/L<br>mg/L                     | ND 1000                         | ND 500                        | ND 1300<br><b>S&amp;</b><br>3.5  | ND 270<br>15310C - 1014<br>1.2    | ND 110 H<br>L ORGANIC CO<br>2.3  | ND 270<br><b>IRBON</b><br>2.4 | ND 540                       | ND 25                            | ND 25                        | ND 25                          | ND 6.8                        | ND 0.54 H                           | ND 5.4                        |
| Sulfide                                                                        | mg/L                             | ND 0.1                          | 3.6                           | 0.6                              |                                   | 2-D - SULFIDE<br>0.03 J          | 0.45                          | 0.74                         | ND 0.1                           | 0.15                         | ND 0.05 H                      | 0.023 J                       | 0.41                                | ND 0.022                      |
| Bicarbonate Alkalinity Carbonate Hydroxide                                     | mg/L<br>mg/L                     | 390<br>ND 5                     | 610<br>ND 5                   | 460<br>ND 5                      | SM 23208<br>420<br>ND 5           | 420<br>ND 5                      | 510<br>ND 5                   | 510<br>ND 5                  | 490<br>ND 5                      | 900<br>ND 5                  | 1100<br>ND 5                   | 1100<br>ND 5                  | 1200<br>ND 5                        | 990<br>ND 5                   |
| Hydroxide Alkalinity Total Alkalinity                                          | mg/L<br>mg/L<br>mg/L             | ND 5<br>390                     | ND 5<br>610                   | ND 5<br>460                      | ND 5<br>420                       | ND 5<br>420                      | ND 5<br>510                   | ND 5<br>510                  | ND 5<br>490                      | ND 5<br>900                  | ND 5<br>1100                   | ND 5<br>1100                  | ND 5<br>1200                        | ND 5<br>990                   |
| Nitrate<br>Sulfate                                                             | mg/L<br>mg/L                     | ND 1.3 ,H                       | ND 0.1                        | ND 1.3                           | PA 300.0 - N/T<br>ND 0.024<br>150 | ND 0.5<br>140                    | ND 0.5<br>94                  | ND 0.5                       | ND 0.1                           | ND 1.3                       | ND 1.3                         | ND 1.3                        | ND 0.5                              | ND 0.5                        |
| Arsenic                                                                        | µg/L                             |                                 |                               | <i>EP4</i><br>ND 15              | 200.7 - ARSE                      | NIC AND MANO<br>ND 4.4           | ANESE 17                      | 22 J,H                       |                                  |                              | ND 15                          | 8.7 J                         | 4.83                                | 5.6 J                         |
| Manganese  Hydrogen                                                            | µg/L<br>nM                       | 0.52 J                          | 0.93 ]                        | 0.71 J                           | 260<br>AMZOGAX<br>5.4             | 240<br>- HYDROGEN<br>4.6         | 1.0 J                         | 590 H                        | 1.5 J                            | 7.3                          | 2100                           | 0.75 J                        | 1700                                | 1300 B                        |
| 4-Methylpentanoic Acid                                                         | mg/L                             | ND 0.056                        |                               | L                                | AM23G - VOLA<br>ND 0.056          | 1                                | 4                             | ND 0.56                      | ND 0.056                         |                              | ND 0.056                       | ND 0.56                       | ND 0.056                            | ND 0.56                       |
| Acetic Acid Butyric Acid Formic Acid                                           | mg/L<br>mg/L<br>mg/L             | 0.33 J<br>ND 0.058<br>5.3       | 48<br>1.1<br>0.66             | 1.1<br>ND 0.058<br>0.41 J        | 0.35 J<br>ND 0.058<br>4.8         | 0.31 J<br>ND 0.058<br>5.3        | 5.5<br>ND 0.58<br>44          | 2.2 J<br>ND 0.58<br>48       | 0.51<br>ND 0.058<br>ND 0.055     | 12<br>ND 0.29<br>1.6 J       | 0.064 J<br>0.41 J              | 13<br>ND 0.58<br>48           | 0.49 J<br>ND 0.058                  | 5.4<br>ND 0.58<br>46          |
| i-Hexanoic Acid<br>Isopentanoic Acid<br>Lactic Acid                            | mg/L<br>mg/L<br>mg/L             | 0.17 J<br>ND 0.061<br>ND 0.053  | ND 0.056<br>0.23 J<br>ND 1.1  | 0.17 J<br>ND 0.061<br>ND 0.053   | ND 0.058<br>ND 0.061<br>ND 0.053  | ND 0.058<br>ND 0.061<br>ND 0.053 | ND 0.58<br>ND 0.61<br>ND 0.53 | 0.59 J<br>ND 0.61            | ND 0.058<br>ND 0.061<br>ND 0.053 | ND 0.28<br>ND 0.3<br>0.44 J  | 0.15 J<br>ND 0.061<br>ND 0.053 | ND 0.58<br>ND 0.61<br>ND 0.53 | ND 0.058<br>ND 0.061<br>ND 0.053    | ND 0.58<br>ND 0.61<br>ND 0.53 |
| Pentanoic Acid Propionic Acid Pyruvic Acid                                     | mg/L<br>mg/L<br>mg/L             | ND 0.056<br>ND 0.053<br>ND 0.06 | 0.78<br>24<br>0.77            | ND 0.056<br>ND 0.053<br>ND 0.06  | ND 0.056<br>ND 0.053<br>ND 0.06   | ND 0.056<br>ND 0.053<br>ND 0.06  | ND 0.56<br>0.58 J<br>ND 0.6   | ND 0.56<br>ND 0.53<br>ND 0.6 | ND 0.056<br>0.058 J<br>ND 0.06   | ND 0.28<br>ND 0.26<br>ND 0.3 | ND 0.056<br>0.19 J<br>ND 0.06  | ND 0.56<br>ND 0.53<br>ND 0.6  | ND 0.056<br>ND 0.053<br>ND 0.06     | ND 0.56<br>0.55 J<br>ND 0.6   |
| Carbon Dioxide                                                                 | mg/L                             | 22.8                            | 60.6                          | 30.9                             | <u> </u>                          | SSOLVED CASE                     | <u> </u>                      | 40.1                         | 61.3                             | 154                          | 204                            | 162                           | 245                                 | 193                           |
| Ethane<br>Ethene<br>Methane                                                    | mg/L<br>mg/L<br>mg/L             | 0.042<br>0.58<br>0.25           | 0.074<br>1.8<br>1.6           | 0.083<br>1.7<br>0.98             | 0.068<br>1.4<br>0.88              | 0.015<br>1.1<br>0.52             | ND 0.00017<br>1.6<br>0.97     | ND 0.00017<br>2<br>0.89      | 0.0013<br>0.0079<br>0.44         | 0.0046<br>0.15               | 0.0081<br>0.58<br>3            | 0.0057<br>0.4<br>3.2          | 0.0038<br>0.67<br>5.6               | ND 0.00017<br>0.45<br>7.6     |
| APS                                                                            | Cells/mL                         | 15700                           |                               |                                  | 550000                            | hlor - MICROB                    | 71200                         | 67900                        | 1440                             |                              |                                | 58000                         |                                     | 63700                         |
| BVC CER CFR                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL | < 0.5<br>< 4.6<br>< 4.6         |                               |                                  | <0.5<br><4.7<br><4.7              |                                  | <0.5<br>286<br><4.6           | <0.5<br>251<br><4.7          | < 0.5<br>< 4.6<br>< 4.6          |                              |                                | <0.5<br>354<br><4.7           |                                     | <0.5<br>349<br><4.6           |
| DCA<br>DCAR<br>DCM                                                             | Cells/mL<br>Cells/mL<br>Cells/mL | < 4.6<br>< 4.6<br>< 4.6         |                               | <br>                             | <4.7<br><4.7<br><4.7              |                                  | <4.6<br><4.6<br><4.6          | <4.7<br><4.7<br><4.7         | < 4.6<br>< 4.6<br>< 4.6          | <br>                         |                                | <4.7<br><4.7<br><4.7          |                                     | <4.6<br><4.6<br>1570          |
| DCMA DECO DHBt                                                                 | Cells/mL<br>Cells/mL<br>Cells/mL | < 4.6<br>1320<br>15300          |                               |                                  | <4.7<br>9170<br>26200             |                                  | <4.6<br>1450<br>13300         | <4.7<br>994<br>28100         | < 4.6<br>1710<br>355             |                              |                                | <4.7<br>2940<br>60100         |                                     | <4.6<br>85800<br>66800        |
| DHC<br>DHG                                                                     | Cells/mL<br>Cells/mL             | 30.2<br>< 4.6                   |                               |                                  | 166000<br><4.7                    |                                  | 181000<br>2180                | 252000<br><4.7               | 6.5<br>< 4.6                     |                              |                                | 59200<br>15200                |                                     | 68400<br>17700                |
| DSB DSM EBAC                                                                   | Cells/mL<br>Cells/mL<br>Cells/mL | 16500<br>10700<br>1360000       |                               |                                  | 28500<br>79200<br>12100000        |                                  | 31700<br>14300<br>5800000     | 15400<br>24200<br>4680000    | 10600<br>< 4.6<br>1700000        |                              |                                | 25100<br>736<br>6080000       |                                     | 93400<br>106000<br>15900000   |
| EtnC<br>EtnE<br>MGN                                                            | Cells/mL<br>Cells/mL<br>Cells/mL | 2100<br>3170<br>25              |                               |                                  | 7490<br>3160<br>8650              |                                  | 18600<br>21500<br>2810        | 9550<br>26700<br>872         | 91<br>580<br>< 4.6               |                              |                                | 16.2<br><4.7<br>11000         |                                     | 981<br>5030<br>398            |
| PCE-1<br>PCE-2<br>PHE                                                          | Cells/mL<br>Cells/mL<br>Cells/mL | < 4.6<br>23800<br>320           |                               |                                  | 114<br>26200<br>1090              |                                  | <4.6<br>399000<br>156         | <4.7<br>250000<br>151        | < 4.6<br>< 4.6                   |                              |                                | 37.2<br>9740<br>891           |                                     | 34.3<br>12400<br>485          |
| RDEG<br>RMO<br>SMMO                                                            | Cells/mL<br>Cells/mL             | 1600<br>< 4.6<br>< 4.6          |                               |                                  | 1480<br>7490                      |                                  | 392<br>339                    | 310<br>78.7                  | < 4.6<br>34.4<br>< 4.6           |                              |                                | 11100<br><4.7                 |                                     | 1100<br>583<br>290            |
| TCBO<br>TCE                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL | < 4.6<br>12.5                   |                               |                                  | 442<br><4.7<br>29400              |                                  | 424<br><4.6<br>30300          | 624<br><4.7<br>62000         | < 4.6<br>< 0.5                   |                              |                                | <4.7<br>9310                  |                                     | <4.6<br>10800                 |
| TDR<br>TOD                                                                     | Cells/mL<br>Cells/mL             | < 4.6<br>207                    |                               |                                  | <4.7<br>903<br>614                |                                  | <4.6<br>336<br>10400          | <4.7<br>464<br>23800         | < 4.6<br>< 4.6<br>< 0.5          |                              |                                | <4.7<br><4.7<br>4750          |                                     | <4.6<br><4.6<br>4790          |



| Analysis Type  Parameter  1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane (TCA) 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane (T,1-DCA) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethane (1,1-DCB) 1,1-Dichloropropene 1,2,3-Trichloropropene 1,2,3-Trichloropropane 1,2,4-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichlorobenzene 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Isopropyltoluene Acetone Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chloroform Chloroform Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dichlorodifluoromethane Dibromochloromethane Dibromochlor | Result Unit  pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REG INIT  Result  ND1*+ 51 ND 1*+ 51 ND 1.1 ND 1.2 5.1 1.3 J ND 1.2 ND 4 ND 1.3 ND 2.5 ND 3.2 ND 2.6 ND 3.2 ND 1.6 ND 1.6 ND 0.86 ND 1.7 ND 1.7 ND 1 ND 1.7 ND 1 ND 1.7 ND 1 ND 1.8 ND 1.9 ND 2.1 ND 2.6 ND 3.3 ND 1.1 ND 1.5 ND 3.6 ND 1.6 ND 1.7 ND 1.7 ND 1.8 ND 1.9 ND 2.1 ND 2.6 ND 1.1 ND 1.7 ND 1.8 ND 1.9 ND 1.1 ND 1.5 ND 3.6 ND 1.2 ND 2.6 620 ND 1.2 ND 2.6 620 ND 1.1 ND 1.5 ND 3.6 ND 1.1 ND 1.5 ND 3.6 ND 1.1 ND 1.7 ND 1.1 ND 1.5 ND 3.6 ND 1.1 ND 1.7 ND 1.1 ND 3.6 ND 1.2*+ ND 0.7 24 ND 1.2 ND 2.6 ND 1.2*+ ND 0.7 24 ND 1.1 ND 1.6 ND 1.7 | REG INIT  Result  ND 10 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10                               | REG INIT  Result  PA 82  ND 25  ND 50  ND 50  ND 50  ND 50  ND 25  ND 50  ND 50  ND 100  ND 25  ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REG INIT  Result  Result  ND 2.5  ND 5  ND 5  ND 5  ND 5  ND 2.5  ND 10  ND 2.5  ND 10  ND 2.5  ND 5  ND 10  ND 2.5  ND 5  ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.1 ND 0.11 ND 0.17 2.6 ND 0.17 2.6 ND 0.17 2.6 ND 0.13 ND 0.12 ND 0.13 ND 0.12 ND 0.33 ND 0.25 ND 0.32 ND 0.25 ND 0.32 ND 0.15 ND 0.16 ND 0.083 ND 0.16 ND 0.083 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.18 ND 0.19 ND 0.11 ND 0.19 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.37 ND 0.18 ND 0.19 ND 0.38 ND 0.19 ND 0.39 ND 0.10 ND 0.30 ND 0.10 ND 0.30 ND 0.11 ND 0.30 ND 0.15 ND 0.16 ND 0.17 ND 0.32 ND 0.32 ND 0.33                                                                                                                                                                    | REG INIT Result  MPUMB ND 0.1 0.46 J ND 0.1 0.46 J ND 0.1 0.46 J ND 0.11 ND 0.12 2 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.2 ND 0.2 ND 0.32 ND 0.2 ND 0.15 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.11 ND 0.19 ND 0.11 ND 0.15 ND 0.36 ND 0.07 12 ND 0.07 12 ND 0.15 ND 0.16 ND 0.17 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.32 | REG INIT  Result  ND 0.1 0.78 ND 0.1 0.78 ND 0.11 ND 0.12 2.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.25 ND 0.22 ND 0.22 ND 0.12 ND 0.14 ND 0.15 ND 0.16 ND 0.16 ND 0.18 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.11 ND 0.19 ND 0.21 ND 0.36 ND 0.11 ND 0.19 ND 0.19 ND 0.11 ND 0.15 ND 0.36 ND 0.11 ND 0.15 | REG INIT  Result  ND 0.4 ND 0.68 ND 0.4 ND 0.48 ND 0.44 ND 0.48 ND 1.6 ND 0.52 ND 0.1 ND 1.3 ND 0.8 ND 0.48 ND 0.56 ND 0.64 ND 0.33 ND 0.8 ND 0.64 ND 0.33 ND 1.8 ND 0.8 ND 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REG INIT Result  ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 50 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100                                            | REG INIT Result  ND 100 ND 200 ND 200 ND 200 ND 100 ND 200 ND 100                                              | REG INIT  Result  ND 200 ND 400 ND 400 ND 400 ND 400 ND 200 ND 200 ND 200 ND 200 ND 200 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 40 | REG INIT Result  ND 20 ND 20 ND 20 ND 20 ND 22 ND 24 3800 54 J 74 J ND 24 ND 80 ND 64 ND 64 ND 40 ND 24 ND 28 ND 30 ND 32 ND 17 ND 20 ND 18 ND 26 ND 22 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 24 ND 14 ND 24 ND 14 ND 24 ND 14 ND 24 ND 14 ND 24 ND 152 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REG INIT Result  ND 5 H 3400 H ND 5 H ND 5 H ND 5 H ND 6 H 81 H ND 6 H ND 16 H ND 16 H ND 16 H ND 16 H ND 17 H ND 7.5 H ND 23 H ND 23 H ND 24 H ND 25 H ND 17 H ND 5.5 H ND 18 H ND 5.5 H ND 18 H ND 5.5 H ND 19 H ND 7.5 H ND 19 H ND 19 H ND 19 H ND 19 H ND 10 H ND 11 H ND 10 H ND  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane (TCC 113) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethane (1,1-DCB) 1,1-Dichloroethane (1,1-DCB) 1,1-Dichloroethane (1,1-DCB) 1,2-Jrichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dichloroethane (EDB) 1,2-Dichloroethane (EDB) 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloroethane (MBK) 2-Chlorotoluene 2-Butanone (MBK) 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 8-Enzene 8romochloromethane 9romochloromethane 9romochlorom | #g/L #g/L #g/L #g/L #g/L #g/L #g/L #g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result    ND 1 *+     S1     ND 1.1     ND 1.2     S.1     1.3     ND 1.2     ND 4     ND 1.3     ND 1.2     ND 4     ND 1.3     ND 2.5     ND 3.2     ND 2.5     ND 3.2     ND 1.2     ND 1.5     ND 1.6     ND 1.6     ND 1.6     ND 1.7     ND 1.7     ND 1.7     ND 1.8     ND 1.8     ND 1.9     ND 1.8     ND 1.1     ND 1.5     ND 1.6     ND 1.7     ND 1.8     ND 1.9     ND 1.8     ND 1.9     ND 1.8     ND 1.1     ND 1.2     ND 3.6     ND 1.2     ND 3.6     ND 1.2     ND 1.6     ND 1.2     ND 3.6     ND 1.2     ND 3.6     ND 1.2     ND 3.6     ND 1.2     ND 3.6     ND 1.2     ND 3.7     ND 1.8     ND 1.1     ND 1.2     ND 3.8     ND 1.1     ND 1.2     ND 3.2     ND 3.3     ND 1.1     ND 1.1     ND 1.1     ND 1.2     ND 3.2     ND 3.3     ND 1.1     ND 1.4     ND 1.1     ND 1.1     ND 1.1     ND 1.1     ND 1.4     ND 1.1     ND 1.4     ND 1.1     ND 1.4     ND 1.4     ND 1.1     ND 1.4     ND 1.4     ND 1.1     ND 1.4     ND 1.5     ND 1.6     ND 1.7     ND 1.8     ND 1.1     ND 1.1     ND 1.4     ND 1.4     ND 1.5     ND 1.5     ND 1.6     ND 1.7     ND 1.8     ND 1.1     ND 1.4     ND 1.4     ND 1.5     ND 1.5     ND 1.6     ND 1.7     ND 1.8     ND 1.1     ND 1.4     ND 1.4     ND 1.5     ND 1.5     ND 1.6     ND 1.7     ND 1.7     ND 1.8     ND 1.1     ND 1.4     ND 1.5     ND | Result    NO 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result  ### Result | Result  ROB WOLATI  ND 2.5  ND 5  ND 5  ND 5  ND 5  ND 2.5  ND 3.5  ND 10  ND 2.5  ND 5  ND 10  ND 2.5  ND 5  ND 10  ND 2.5  ND 5  ND 5  ND 10  ND 2.5  ND 5  ND 5  ND 10  ND 2.5  ND 5  ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result  FORGAME CE  ND 0.1  ND 0.1  ND 0.11  ND 0.17  2.6  ND 0.13  ND 0.12  ND 0.13  ND 0.12  ND 0.4  ND 0.33  ND 0.25  ND 0.32  ND 0.32  ND 0.34  ND 0.14  ND 0.15  ND 0.16  ND 0.08  ND 0.1  ND 0.16  ND 0.10  ND 0.16  ND 0.17  ND 0.17  ND 0.17  ND 0.18  ND 0.19  ND 0.19  ND 0.19  ND 0.19  ND 0.19  ND 0.19  ND 0.10  ND 0.11  ND 0.15  ND 0.16  ND 0.16  ND 0.16  ND 0.17  ND 0.17  ND 0.18  ND 0.19  ND 0.19  ND 0.10  ND 0.10  ND 0.10  ND 0.11  ND 0.36  ND 0.12  ND 0.36  ND 0.12  ND 0.36  ND 0.15  ND 0.16  ND 0.17  ND 0.31  ND 0.17  ND 0.32  ND 0.18  ND 0.17  ND 0.30  ND 0.18  ND 0.19  ND 0.30  ND 0.10  ND 0.30  ND 0.11  ND 0.30 | Result  MPCMMOS  ND 0.1  0.46 J  ND 0.1  0.46 J  ND 0.1  ND 0.11  ND 0.12  2  ND 0.13  ND 0.12  ND 0.4  ND 0.13  ND 0.25  ND 0.25  ND 0.25  ND 0.25  ND 0.16  ND 0.16  ND 0.17  ND 0.17  ND 0.18  ND 0.19  ND 0.19  ND 0.10  ND 0.11  ND 0.15  ND 0.16  ND 0.17  ND 0.18  ND 0.19  ND 0.19  ND 0.19  ND 0.19  ND 0.19  ND 0.10  ND 0.10  ND 0.10  ND 0.11  ND 0.15  ND 0.16  ND 0.17  ND 0.17  ND 0.17  ND 0.16  ND 0.17  ND 0.16  ND 0.17  ND 0.16  ND 0.17  ND 0.17  ND 0.17  ND 0.17  ND 0.17  ND 0.17                                                                                                                                                                   | Result  ND 0.1 0.78 ND 0.1 0.78 ND 0.11 ND 0.12 2.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.25 ND 0.32 ND 0.21 ND 0.14 ND 0.15 ND 0.16 ND 0.16 ND 0.086 ND 0.1 ND 0.086 ND 0.1 ND 0.15 ND 0.33 ND 0.11 ND 0.15 ND 0.33 ND 0.11 ND 0.15 ND 0.33 ND 0.11 ND 0.15 ND 0.15 ND 0.10 ND 0.15 ND 0.10 ND 0.15 ND 0.10 ND 0.15 ND 0.18 ND 0.10 ND 0.19 ND 0.14 ND 0.19 ND 0.14 ND 0.19 ND 0.18 ND 0.19 ND 0.19 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.06 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.26 1.8 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.16                       | Result  ND 0.4  ND 0.68  ND 0.4  ND 0.68  ND 0.44  ND 0.52  ND 0.52  ND 1.6  ND 0.52  ND 1.8  ND 0.8  ND 0.48  ND 0.49  ND 0.89  ND 0.80  ND 0.80  ND 0.80  ND 0.60  ND 0.61  ND 0.61  ND 0.62  ND 0.60  ND 0.72  ND 0.36  ND 0.72  ND 0.36  ND 0.76  ND 0.84  ND 1.4  ND 0.48  ND 1.4  ND 0.48  ND 0.28  7.5  ND 0.48  ND 0.48  ND 0.48  ND 0.48  ND 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result  ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 | Result  ND 100 ND 100 ND 100 ND 100 A200 ND 100 ND 100 ND 100 ND 100 ND 200 ND 200 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 | Result  ND 200 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result  ND 20 ND 20 ND 20 ND 20 ND 22 ND 24 3800 54 J 74 J ND 24 ND 80 ND 26 ND 66 ND 64 ND 40 ND 28 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 18 ND 30 ND 32 ND 18 ND 30 ND 32 ND 17 ND 20 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 24 ND 48 ND 24 ND 14 ND 24 ND 24 ND 25 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result  ND 5 H 3400 H ND 5 H ND 5 H ND 5 SH ND 6 SH ND 10 SH ND 11 SH ND 10 SH N |
| 1,1,2-Trichloroethane (TCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ру/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1 ND 1. ND 1.1 ND 1.2 S.1 1.3 J ND 1.2 ND 4 ND 1.3 ND 2.5 ND 3.2 ND 2.5 ND 3.2 ND 1.2 ND 1.6 ND 1.6 ND 1.6 ND 1.7 ND 1.7 ND 1.8 ND 1.7 ND 1.8 ND 1.8 ND 1.9 ND 1.8 ND 1.1 ND 1.5 ND 1.6 ND 1.6 ND 1.7 ND 1.7 ND 1.7 ND 1.8 ND 1.8 ND 1.9 ND 1.8 ND 1.9 ND 1.8 ND 1.1 ND 1.6 ND 1.2 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.6 ND 1.7 ND 3.6 ND 1.7 ND 3.7 ND 3.8 ND 1.1 ND 1.6 ND 1.7 ND 3.8 ND 1.1 ND 1.6 ND 1.7 ND 3.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO 10 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 | ND 25 ND 50 ND 50 ND 50 ND 50 ND 25 ND 50 ND 100 ND 25 ND 50 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 2.5 ND 3.5 ND 5 ND 5 ND 5 ND 6 ND 6 ND 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.1 ND 0.11 ND 0.17 2.6 ND 0.17 2.6 ND 0.17 2.6 ND 0.13 ND 0.12 ND 0.13 ND 0.12 ND 0.33 ND 0.25 ND 0.32 ND 0.25 ND 0.32 ND 0.15 ND 0.16 ND 0.083 ND 0.16 ND 0.083 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.18 ND 0.19 ND 0.11 ND 0.19 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.37 ND 0.18 ND 0.19 ND 0.38 ND 0.19 ND 0.39 ND 0.10 ND 0.30 ND 0.10 ND 0.30 ND 0.11 ND 0.30 ND 0.15 ND 0.16 ND 0.17 ND 0.32 ND 0.32 ND 0.33                                                                                                                                                                    | ND 0.1  0.46 J ND 0.1  0.46 J ND 0.1  ND 0.11  ND 0.12  2  ND 0.13  ND 0.12  ND 0.4  ND 0.33  ND 0.12  ND 0.32  ND 0.25  ND 0.32  ND 0.2  ND 0.15  ND 0.16  ND 0.16  ND 0.16  ND 0.17  ND 0.18  ND 0.19  ND 0.10  ND 0.10  ND 0.10  ND 0.10  ND 0.11  ND 0.15  ND 0.15  ND 0.16  ND 0.17  ND 0.17  ND 0.19  ND 0.19  ND 0.19  ND 0.10  ND 0.10  ND 0.11  ND 0.12  ND 0.12  ND 0.15  ND 0.16  ND 0.17  ND 0.16  ND 0.17  ND 0.17  ND 0.16  ND 0.17  ND 0.17  ND 0.17  ND 0.17  ND 0.17  ND 0.17   | 0.78 ND 0.1 ND 0.11 ND 0.12 2.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.2 ND 0.12 ND 0.14 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.18 ND 0.19 ND 0.19 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.10 ND 0.10 ND 0.11 ND 0.10 ND 0.11 ND 0.10 ND 0.11 ND 0.11 ND 0.12 ND 0.12 ND 0.07  8.8 ND 0.12 ND 0.06 ND 0.11 ND 0.15 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.16 ND 0.16           | ND 0.68 ND 0.4 ND 0.44 ND 0.48 4.2 ND 0.52 ND 0.52 ND 1.6 ND 0.52 ND 1.3 ND 0.8 ND 0.64 ND 0.65 ND 0.60 ND 0.64 ND 0.64 ND 0.55 ND 0.60 ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 50 ND 100 ND 50 ND 50 ND 100 ND 50 ND 50 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 50 ND 50 ND 50 ND 100                                  | ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 100 ND 100 ND 200                                                                                                  | ND 200 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 20 ND 22 ND 24 3800 54 J 74 J ND 24 ND 80 ND 26 ND 26 ND 50 ND 64 ND 40 ND 24 ND 28 ND 30 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 18 ND 30 ND 32 ND 30 ND 32 ND 30 ND 32 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 30 ND 760 ND 18 ND 36 ND 18 ND 38 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3400 H ND 5 H ND 5 H 66 H 81 H ND 6.5 H ND 6.6 H ND 10 H ND 11 H ND 11 H ND 10 |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane (CFC 113) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethane (1,1-DCB) 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dichloroethane (EDB) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene 1,3-Dichloroethane 1,3-Dichloroethan | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 1 ND 1.1 ND 1.1 ND 1.2 5.1 1.3 J ND 1.2 ND 4 ND 1.3 ND 2.5 ND 3.2 ND 2 ND 1.2 ND 1.6 ND 1.6 ND 1.7 ND 1.8 ND 1.7 ND 1.6 ND 1.2 ND 2.1 ND 2.6 620 ND 1.7 ND 3.2 ND 2.1 ND 3.2 ND 1.4 ND 1.5 ND 3.8 ND 1.1 ND 1.5 ND 3.8 ND 3.8 ND 4.6 ND 3.8 ND 1.1 ND 1.7 ND 1.8 ND 1.8 ND 1.8 ND 1.9 ND 1.8 ND 1.1 ND 1.7 ND 1.6 ND 1.7 ND 3.2 ND 3.2 ND 3.2 ND 3.2 ND 3.2 ND 3.2 ND 3.3 ND 1.1 ND 1.2 ND 3.3 ND 1.1 ND 1.2 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 3.2 ND 0.84 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10                                           | ND 25 ND 50 ND 50 ND 50 ND 50 ND 25 ND 26 ND 100 ND 25 ND 100 ND 25 ND 100 ND 25 ND 100 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 2.5 ND 3.5 ND 5 ND 3.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.11 ND 0.12 ND 0.13 ND 0.13 ND 0.13 ND 0.13 ND 0.13 ND 0.13 ND 0.25 ND 0.32 ND 0.32 ND 0.12 0.13 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.37 ND 0.38                                                                                                                                                            | ND 0.1 ND 0.11 ND 0.12 2 ND 0.13 ND 0.12 2 ND 0.13 ND 0.12 ND 0.13 ND 0.25 ND 0.25 ND 0.22 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.17 ND 0.18 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17                                                                                                                                                                                 | ND 0.1 ND 0.11 ND 0.12 2.4 ND 0.13 ND 0.12 2.4 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.25 ND 0.22 ND 0.12 ND 0.16 ND 0.16 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.4 ND 0.44 ND 0.48 ND 0.48 4.2 ND 0.52 ND 0.48 ND 1.6 ND 0.52 ND 1.8 ND 1.3 ND 0.8 ND 0.48 ND 0.39 ND 0.66 ND 0.66 ND 0.66 ND 0.64 ND 0.33 ND 1.8 ND 1.3 ND 0.44 ND 0.34 ND 0.35 ND 0.46 ND 0.66 ND 0.66 ND 0.66 ND 0.66 ND 0.67 ND 0.68 ND 0.72 ND 0.36 ND 0.36 ND 0.40 ND 0.36 ND 0.40 ND 0.37 ND 0.38 ND 1.8 ND 1.8 ND 1.8 ND 0.40 ND 0.88 ND 0.76 ND 0.76 ND 0.76 ND 0.76 ND 0.76 ND 0.77 ND 0.86 ND 0.78 ND 0.87 ND 0.88 ND 0.48 ND 1.4 ND 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 50 ND 50 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 100 ND 50 ND 100 ND 50 ND 50 ND 100 ND 50 ND 100                                                                   | ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 100 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 RE500                                                                                                                                      | ND 200 ND 200 ND 200 ND 200 ND 200 ND 200 ND 400 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 22 ND 24 3800 54J 74J ND 24 ND 80 ND 26 ND 50 ND 64 ND 40 ND 24 54J ND 28 ND 30 ND 17 ND 20 ND 18 ND 36 ND 32 ND 34 ND 34 ND 34 ND 34 ND 24 ND 36 ND 27 ND 17 ND 20 ND 30 ND 30 ND 760 ND 18 ND 36 ND 28 ND 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 5 H ND 5.5 H ND 5.5 H ND 6 H 66 H 81 H ND 6 H ND 6 H ND 16 H ND 10 H ND 6 H ND 10 H ND 10 H ND 10 H ND 7.5 H ND 7.5 H ND 7.5 H ND 2.3 H ND 17.5 H ND 4.2 H ND 4.2 H ND 4.2 H ND 4.3 H ND 5.5 H ND 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCB) 1,1-Dichloroethene (1,1-DCB) 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromosthane (EDB) 1,2-Dibromosthane (EDB) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene Acetone Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Cis-1,3-Dichloropropene Dibromochloromethane Dibromo | pg/L   pg/L | 5.1 1.3 J ND 1.2 ND 1.2 ND 4 ND 1.3 ND 2.5 ND 3.2 ND 2 ND 1.2 ND 1.7 ND 1.4 ND 1.5 ND 1.6 ND 1.6 ND 1.8 ND 1.7 ND 1.8 ND 1.8 ND 1.1 ND 1.7 ND 1.8 ND 1.8 ND 1.1 ND 1.8 ND 1.8 ND 1.9 ND 1.8 ND 1.1 ND 1.6 ND 1.2 ND 1.6 ND 1.2 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.1 ND 1.8 ND 1.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 10 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10                         | ND 25 ND 25 ND 50 ND 25 ND 50 ND 100 ND 25 ND 50 ND 25 ND 50 ND 50 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25 ND 50 ND 50 ND 50 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.2 ND 2.5 ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 2.5 ND 5 ND 10 ND 2.5 ND 5 ND 5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.25 ND 0.32 ND 0.2 ND 0.12 0.13 J ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.086 ND 0.1 ND 0.080 ND 0.11 ND 0.15 13 ND 0.16 ND 0.10 ND 0.11 ND 0.15 13 ND 0.16 ND 0.10 ND 0.11 ND 0.12 ND 0.12 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.17 ND 0.36 ND 0.37 ND 0.38                                                                                                                                                                                                 | 2 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.2 ND 0.12 O 1.5 J ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.16 ND 0.17 ND 0.17 ND 0.16 ND 0.17 ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 ND 0.13 ND 0.13 ND 0.12 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.2 ND 0.12 ND 0.12 ND 0.16 ND 0.16 ND 0.18 ND 0.17 ND 0.18 ND 0.19 ND 0.18 ND 0.19 ND 0.21 ND 0.36 ND 0.10 ND 0.11 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.07  8.8 ND 0.12 ND 0.26  1.8 ND 0.15 ND 0.16 ND 0.16 ND 0.17                                          | 4.2 ND 0.52 ND 0.48 ND 1.6 ND 0.52 ND 0.48 ND 1.6 ND 0.52 ND 1.8 ND 0.8 ND 0.48 ND 0.39 ND 0.56 ND 0.6 ND 0.64 ND 0.34 ND 0.33 ND 1.8 ND 1.3 ND 0.44 ND 0.45 ND 0.69 ND 0.60 ND 0.70 ND 0.70 ND 0.84 ND 0.72 ND 0.36 ND 0.75 ND 0.36 ND 0.76 ND 0.84 ND 1.4 ND 0.48 ND 1.4 ND 0.48 ND 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58 94 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 100 ND 100 ND 50 ND 100 ND 100 ND 50 ND 100 ND 50 ND 50 ND 50 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 50 ND 50 ND 50 ND 100                                                                                                                                           | ND 100 ND 100 ND 100 ND 200 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200                                                                                                                                                          | ND 200 ND 200 ND 400 ND 400 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 200 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54 J 74 J 74 J ND 24 ND 80 ND 26 ND 50 ND 64 ND 40 ND 24 SD 30 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 92 ND 66 ND 22 ND 30 ND 30 ND 30 ND 30 ND 30 ND 30 ND 17 ND 92 ND 16 ND 18 ND 30 ND 18 ND 36 ND 28 ND 30 ND 760 ND 18 ND 36 ND 28 ND 38 ND 30 ND 750 ND 16 ND 18 ND 36 ND 18 ND 38 ND 30 ND 750 ND 16 ND 18 ND 36 ND 18 ND 36 ND 18 ND 36 ND 28 ND 30 ND 750 ND 14 ND 42 ND 72 ND 24 ND 14 ND 48 ND 24 ND 14 ND 48 ND 25 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 H 81 H ND 64 H ND 6.5 H ND 16 H ND 16 H ND 7.5 H ND 7.5 H ND 5.5 H ND 10 H  |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorotehane Chlorofothane Chlorofothane Chlorofothane Chlorofothane Chloropenzene Chloromethane Cis-1,2-Dichloropropene Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichloroffuromethane Cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dibromochloromethane Tichlorofluoromethane Tichlorofluoromethene Tetrachloroethene (PCE) Toluene Tetrachloroethene (PCE) Trichloroethene (PCE) Trichlorofluorometene (FCE)                                                    | ру/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.2 ND 4 ND 1.3 ND 2.5 ND 3.2 ND 2.5 ND 3.2 ND 1.2 ND 0.97 ND 1.4 ND 1.5 ND 1.6 ND 0.86 ND 1. ND 0.83 ND 4.6 ND 3.3 ND 1.1 ND 1.7 ND 1 ND 1.7 ND 1 ND 1.7 ND 1 ND 1.8 ND 0.91 ND 1.8 ND 0.91 ND 1.8 ND 0.91 ND 1.8 ND 1.9 ND 1.9 ND 1.6 ND 1.7 ND 1.7 ND 1 ND 1.6 ND 1.2 ND 0.8 ND 0.91 ND 1.2 ND 0.7 24 ND 0.7 24 ND 0.7 24 ND 1.2 ND 1.6 ND 1.2 ND 0.84 ND 1.1 ND 1.8 ND 1.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20                                                       | ND 25 ND 50 ND 25 ND 26 ND 50 ND 100 ND 50 ND 50 ND 100 ND 25 ND 50 ND 100 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 2.5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.12 ND 0.4 ND 0.4 ND 0.13 ND 0.25 ND 0.32 ND 0.32 ND 0.12 0.13 J ND 0.15 ND 0.16 ND 0.16 ND 0.083 ND 0.46 3.2 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.08 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.37 ND 0.38 ND 0.18 ND 0.18 ND 0.19 ND 0.38 ND 0.19 ND 0.39 ND 0.30 ND 0.30                                                                                                                                                                                                                                               | ND 0.12 ND 0.44 ND 0.32 ND 0.25 ND 0.32 ND 0.32 ND 0.32 ND 0.12 0.15 J ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.17 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.10 ND 0.10 ND 0.11 ND 0.12 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.10 ND 0.11 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.11                                                                                                                                                                                                            | ND 0.12 ND 0.4 ND 0.4 ND 0.32 ND 0.25 ND 0.32 ND 0.2 ND 0.12 0.2 J ND 0.15 ND 0.16 ND 0.16 ND 0.083 ND 0.1 ND 0.083 ND 0.1 ND 0.15 ND 0.8 ND 0.09 ND 0.18 ND 0.09 ND 0.18 ND 0.19 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.06 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.16 ND 0.17                                                                                                                           | ND 0.48 ND 1.6 ND 0.52 ND 1 ND 1.3 ND 0.8 ND 0.8 ND 0.48 ND 0.39 ND 0.56 ND 0.66 ND 0.64 ND 0.64 ND 0.64 ND 0.34 ND 0.34 ND 0.35 ND 0.66 ND 0.64 ND 0.67 ND 0.68 ND 0.68 ND 0.40 ND 0.68 ND 0.40 ND 0.68 ND 0.40 ND 0.56 ND 0.40 ND 0.56 ND 0.40 ND 0.56 ND 0.40 ND 0.56 ND 0.76 ND 0.77 ND 0.84 ND 1.4 ND 0.48 ND 0.28 ND 0.48 ND 0.68 ND 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 100 ND 100 ND 100 ND 100 ND 100 ND 50 ND 50 ND 100 ND 50 ND 50 ND 50 ND 100 ND 50 ND 50 ND 100 ND 100 ND 50 ND 100                                                                                                                               | ND 100 ND 200 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200                                                                                                                                                                                                           | ND 200 ND 400 ND 400 ND 400 ND 200 ND 400 ND 400 ND 400 ND 800 ND 200 ND 400 ND 800 ND 200 ND 400 ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 200 ND 400 ND 200 ND 200 ND 400 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 24 ND 80 ND 26 ND 50 ND 64 ND 40 ND 24 54 J ND 28 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 20 ND 16 ND 16 ND 18 ND 36 ND 22 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 24 ND 14 ND 48 ND 24 ND 14 ND 48 ND 24 ND 24 ND 25 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 6 H ND 20 H ND 20 H ND 13 H ND 16 H ND 10 H S1 H ND 7 H ND 7.5 H ND 23 H ND 23 H ND 23 H ND 24 H ND 24 H ND 24 H ND 25 H ND 5.5 H ND 8.5 H ND 7.5 H ND 8.5 H ND 17 H ND 8.5 H ND 17 H ND 17 H ND 17 H ND 18 H ND 18 H ND 10 H ND 10 H ND 11 H ND 11 H ND 11 H ND 12 H ND 12 H ND 13 H ND 12 H ND 13 H ND 13 H ND 14 H ND 15 H ND 16 H ND 17 H ND 18 H ND 18 H ND 18 H ND 19 H ND 11 H ND 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotolune 2-Hexanone 4-Chlorotolune 4-Isopropyltolune Acetone 8enzene 8romochloromethane 8romochloromethane 8romochloromethane 8romochloromethane 8romochloromethane 0-Chlorotolune 1-Chlorotolune 4-Isopropyltolune Acetone 8-Isopropyltolune Acetone Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloropropene Dibromochloromethane Tetrachlorothuadiene Roppylbenzene Methyl Isobuly Ketone Methyl Isobuly Ketone Methyl Isobuly Ketone Methyl Isobuly Ketone Tetrachlorothene (PCE) Tollune Tetrachlorothene (PCE) Tollune Tetrachlorothene (PCE) Tichlorothene (PCE) Tichlorothene (PCE) Tichlorothene (PCE) Tichlorothene (PCE) Tichlorothene (PCE) Tichlorothene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2.5 ND 3.2 ND 3.2 ND 1.2 ND 0.97 ND 1.4 ND 1.5 ND 1.6 ND 0.86 ND 1 ND 0.86 ND 1 ND 0.87 ND 1.6 ND 0.88 ND 1.1 ND 1.7 ND 1.7 ND 1 ND 1.5 ND 1.6 ND 0.8 ND 0.9 ND 0.9 ND 1.8 ND 0.9 ND 1.1 ND 1.2 ND 2.6 620 ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.8 ND 1.9 ND 1.9 ND 1.1 ND 1.6 ND 1.7 ND 1.6 ND 1.1 ND 1.1 ND 1.6 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.1 ND 1.6 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.1 ND 1.6 ND 1.1 ND 1.6 ND 1.1 ND 1.6 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.1 ND 1.6 ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.1 ND 1.8 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.8 ND 1.8 ND 1.1 ND 1.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10                                                                                                                                                                         | ND 50 ND 50 ND 50 ND 25 ND 50 ND 100 ND 25 ND 100 ND 25 ND 50 ND 100 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 5 ND 5 ND 2.5 ND 3.5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.25 ND 0.32 ND 0.32 ND 0.12 0.13 J ND 0.14 ND 0.15 ND 0.16 ND 0.083 ND 0.46 3.2 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.37 ND 0.38 ND 0.18 ND 0.18 ND 0.19 ND 0.39 ND 0.19 ND 0.30 ND 0.30 ND 0.30 ND 0.30 ND 0.31                                                                                                                                                                                                                                                                                                                                     | ND 0.25 ND 0.32 ND 0.32 ND 0.12 0.15 J ND 0.14 ND 0.15 ND 0.16 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.33 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.10 ND 0.11 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.15 ND 0.16 ND 0.17 ND 0.17 ND 0.16 ND 0.17 ND 0.17 ND 0.17 ND 0.17                                                                                                                                                                                                    | ND 0.25 ND 0.32 ND 0.32 ND 0.12 0.2 J ND 0.14 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.33 ND 0.41 ND 0.17 ND 0.1 ND 0.15 ND 0.11 ND 0.15 ND 0.11 ND 0.15 ND 0.11 ND 0.15 ND 0.11 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                | ND 1 ND 1.3 ND 0.8 ND 0.48 ND 0.6 ND 0.64 ND 0.33 ND 0.44 ND 0.34 ND 0.66 ND 0.66 ND 0.66 ND 0.66 ND 0.66 ND 0.66 ND 0.67 ND 0.47 ND 0.68 ND 0.47 ND 0.48 ND 0.48 ND 0.48 ND 0.49 ND 0.49 ND 0.49 ND 0.49 ND 0.49 ND 0.40 ND 0.56 ND 0.56 ND 0.76 ND 0.77 ND 0.76 ND 0.77 ND 0.76 ND 0.77 ND 0.76 ND 0.77 ND 0.77 ND 0.77 ND 0.78 ND 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 100 ND 100 ND 100 ND 50 S0 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 200 ND 50 ND 100 ND 50 ND 100 ND 50 ND 100 ND 100 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 50 ND 50 ND 50 ND 100                                                                                                                                                                                                                                                               | ND 200 ND 200 ND 100 ND 200                                                                                                                                                                                                                                                                                 | ND 400 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 50 ND 64 ND 40 ND 24 54 J ND 28 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 92 ND 66 ND 22 ND 34 ND 20 ND 34 ND 20 ND 16 ND 18 ND 36 ND 18 ND 36 ND 18 ND 36 ND 18 ND 36 ND 19 ND 18 ND 36 ND 19 ND 20 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 13 H ND 16 H ND 16 H ND 10 H ND 16 H ND 16 H ND 17 H ND 7.5 H ND 8.5 H ND 2.3 H ND 2.3 H ND 2.5 H ND 3.5 H ND 4.6 H ND 9.6 H ND 11 H ND 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Korotoluene 4-Isopropyltoluene Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chloroberhane Cis-1,3-Dichloropropene Dibromochloromethane Dibromochlorometh | ру/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2 ND 1.2 ND 1.2 ND 1.5 ND 1.6 ND 1.6 ND 1.6 ND 0.83 ND 4.6 ND 1. ND 0.83 ND 1.1 ND 1.7 ND 1.8 ND 1.8 ND 1.1 ND 1.7 ND 1.8 ND 1.8 ND 1.1 ND 1.2 ND 2.6 620 ND 1.2 ND 1.6 ND 1.2 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 3.8 ND 1.1 ND 1.1 ND 1.6 ND 1.7 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.6 ND 1.7 ND 3.6 ND 1.7 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 10 ND 20                                                                                                                         | ND 50 ND 25 ND 50 ND 25 ND 50 ND 100 ND 25 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 5 ND 2.5 ND 5 ND 10 ND 2.5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.2 ND 0.12 ND 0.13 ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 3.2 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.08 ND 0.14 ND 0.19 ND 0.10 ND 0.11 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.32 ND 0.32                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.2 ND 0.12 ND 0.15 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.083 ND 0.46 ND 0.33 ND 0.41 ND 0.17 ND 0.15 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.10 ND 0.10 ND 0.110 ND 0.110 ND 0.121 ND 0.15 ND 0.16                                                                                                                                                                                                                                                         | ND 0.2 ND 0.12 ND 0.12 ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.11 ND 0.33 ND 0.11 ND 0.17 ND 0.15 ND 0.17 ND 0.15 ND 0.18 ND 0.11 ND 0.15 ND 0.18 ND 0.11 ND 0.15 ND 0.88 ND 0.09 ND 0.19 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.37 8.8 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.36 ND 0.12 ND 0.37 8.8 ND 0.12 ND 0.36 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17                                                                                                                                                                  | ND 0.8 ND 0.48 ND 0.49 ND 0.56 ND 0.60 ND 0.60 ND 0.64 ND 0.33 ND 1.8 ND 1.3 ND 0.44 ND 0.65 ND 0.66 ND 0.69 ND 0.69 ND 0.69 ND 1.5 ND 0.56 ND 0.68 ND 0.72 ND 0.56 ND 0.75 ND 0.56 ND 0.75 ND 0.56 ND 0.76 ND 0.84 ND 1.4 ND 0.48 ND 1.4 ND 0.48 ND 1.4 ND 0.48 ND 1.4 ND 0.48 ND 0.28 7.5 ND 0.48 ND 0.28 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 100 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 100                                                                                                                                                                                                                                             | ND 200 ND 100 ND 200 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 100 ND 100 ND 200 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                  | ND 400 *+ ND 200 ND 400 ND 400 ND 400 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400 ND 200 ND 200 ND 200 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 40 ND 24 ND 28 ND 30 ND 30 ND 32 ND 17 ND 20 ND 17 ND 92 ND 66 ND 22 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 24 ND 42 ND 72 ND 24 ND 14 ND 48 ND 24 ND 24 ND 24 ND 24 ND 25 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 10 H ND 6 H S1 H ND 7.5 H ND 7.5 H ND 7.5 H ND 8 H ND 4.2 H ND 23 H ND 4.2 H ND 23 H ND 5.5 H ND 5.5 H ND 5.5 H ND 7.5 H ND 10 H ND 7.5 H ND 10 H ND 11 H ND 10 H ND 10 H ND 10 H ND 11 H ND 10 H ND 11 H ND 10 H ND 11 H ND 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichloropropane 2,-Butanone (MEK) 2,-Chlorofoluene 2-Hexanone 4-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromochlo | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 1.4 ND 1.5 ND 1.6 ND 0.86 ND 1 ND 0.83 ND 4.6 ND 3.3 ND 1.1 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.8 ND 0.8 ND 0.91 ND 1.8 ND 0.91 ND 1.8 ND 1.4 ND 1.9 *+ ND 2.1 ND 3.6 ND 1.2 *+ ND 0.7 24 ND 1.2 ND 1.6 ND 1.2 *- ND 1.6 ND 1.7 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.6 ND 1.1 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 10 ND 20 ND 10 ND 20 ND 40 ND 10 ND 20 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20                                                                                                                                                                               | ND 25 ND 25 ND 25 ND 25 ND 25 ND 50 ND 100 ND 25 ND 100 ND 25 ND 100 ND 25 ND 50 ND 25 ND 25 ND 25 ND 25 ND 25 ND 50 ND 25 ND 50 ND 25 ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 2.5 ND 2.5 ND 2.5 ND 2.5 ND 2.5 ND 2.5 ND 5 ND 10 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.086 ND 0.1 ND 0.086 ND 0.1 ND 0.46 3.2 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.18 ND 0.18 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.11 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.17 ND 0.32 ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.33 ND 0.11 ND 0.17 ND 0.15 ND 0.88 ND 0.19 ND 0.18 ND 0.18 ND 0.18 ND 0.19 ND 0.18 ND 0.19 ND 0.18 ND 0.19 ND 0.21 ND 0.36 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.17 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.14 ND 0.15 ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.33 ND 0.11 ND 0.17 ND 0.15 ND 0.15 ND 0.15 ND 0.18 ND 0.08 ND 0.09 ND 0.19 ND 0.14 ND 0.15 ND 0.14 ND 0.15 ND 0.18 ND 0.09 ND 0.14 ND 0.17 ND 0.15 ND 0.16 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.56 ND 0.6 ND 0.64 ND 0.34 ND 0.34 ND 0.4 ND 0.35 ND 1.8 ND 1.3 ND 0.44 ND 0.68 ND 0.6 ND 15 ND 0.36 ND 0.7 ND 0.36 ND 0.72 ND 0.36 ND 0.72 ND 0.56 ND 0.72 ND 0.56 ND 0.72 ND 0.56 ND 0.75 ND 0.76 ND 0.84 ND 1.4 ND 0.48 ND 1.4 ND 0.56 ND 0.76 ND 0.76 ND 0.84 ND 1.4 ND 0.88 ND 1.4 ND 0.88 ND 0.78 ND 0.88 ND 0.79 ND 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 50 ND 50 ND 50 ND 50 ND 50 ND 100 ND 100 ND 200 ND 50 ND 100 ND 50 ND 100                                                                                                                                                                                                                                                                                                              | ND 100 ND 100 ND 100 ND 100 ND 100 ND 200 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 200 ND 200 ND 200 ND 200 ND 200 ND 400 ND 400 ND 800 ND 800 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 28 ND 30 ND 30 ND 32 ND 17 ND 20 ND 17 ND 20 ND 17 ND 92 ND 66 ND 22 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 24 ND 14 ND 48 ND 24 ND 24 ND 14 ND 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 7 H ND 7.5 H ND 4.3 H ND 8.1 N ND 8.1 N ND 5.1 N ND 5.2 N ND 17 H ND 5.5 H ND 7.5 H ND 7.5 H ND 7.5 H ND 19 H ND 10 H ND 11 H ND 11 H ND 11 H ND 12 H ND 13 H ND 12 H ND 13 H ND 14 N ND 15 H ND 15 H ND 15 H ND 15 H ND 16 H ND 17 H ND 17 H ND 18 H ND 11 H ND 13 H ND 11 H ND 11 H ND 11 H ND 13 H ND 11 H ND 13 H ND 11 H ND 13 H ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 6-Isopropyltoluene Acetone 8enzene 8romochloromethane 8romochloromethane 8romochloromethane 8romochloromethane 8romochloromethane 6-Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Cis-1,3-Dichloropropene Dibromochloromethane Tichloromethane Dibromochloromethane  | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.6 ND 0.86 ND 1 ND 0.86 ND 1 ND 0.83 ND 4.6 ND 3.3 ND 1.1 ND 1.7 ND 1 ND 1.5 ND 3.8 ND 0.8 ND 0.91 ND 1.8 ND 1.4 ND 1.2 ND 2.6 620 ND 1.2 ND 2.6 620 ND 1.5 ND 3.6 ND 1.7 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 20 ND 10 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10                                                                                                                                                                                                                                           | ND 25 ND 25 ND 25 ND 50 ND 100 ND 100 ND 25 ND 50 ND 25 ND 50 ND 50 ND 25 ND 50 ND 50 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2.5 ND 2.5 ND 2.5 ND 5 ND 10 ND 2.5 ND 10 ND 2.5 ND 10 ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 2.5 ND 5 ND 2.5 ND 5 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 3.2 ND 0.17 ND 0.17 ND 0.17 ND 0.15 13 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.37 ND 0.38 ND 0.18 ND 0.18 ND 0.19 ND 0.39 ND 0.30 ND 0.30 ND 0.30 ND 0.30 ND 0.31 ND 0.31 ND 0.32 ND 0.32 ND 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.33 ND 0.17 ND 0.17 ND 0.17 ND 0.18 ND 0.08 ND 0.091 ND 0.14 ND 0.19 ND 0.14 ND 0.19 ND 0.12 ND 0.16 ND 0.16 ND 0.17 ND 0.15 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.37 ND 0.15 ND 0.15 ND 0.16 ND 0.17 ND 0.21 ND 0.21 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.17 ND 0.36                                                                                                                                                                                                                                                                                                                                                                  | ND 0.16 ND 0.086 ND 0.1 ND 0.083 ND 0.46 ND 0.17 ND 0.083 ND 0.11 ND 0.17 ND 0.1 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.091 ND 0.18 ND 0.19 ND 0.19 ND 0.21 ND 0.36 ND 0.07 8.8 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.15 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                    | ND 0.64 ND 0.34 ND 0.33 ND 1.8 ND 1.3 ND 0.44 ND 0.66 ND 0.6 ND 0.6 ND 0.72 ND 0.36 ND 0.76 ND 0.76 ND 0.76 ND 0.76 ND 0.76 ND 0.84 ND 1.4 ND 0.48 ND 0.48 ND 0.48 ND 0.28 ND 0.48 ND 0.68 ND 0.75 ND 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 50 ND 50 ND 50 ND 100 ND 50 ND 100 ND 200 ND 50 ND 200 ND 100                                                                                                                                                                                                                                                                                                                                        | ND 100 ND 100 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 100 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 200 ND 200 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 200 ND 200 ND 200 ND 400 ND 400 ND 200 ND 400 ND 200 ND 800 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 32<br>ND 17<br>ND 20<br>ND 17<br>ND 92<br>ND 66<br>ND 22<br>ND 34<br>ND 20<br>ND 30<br>ND 16<br>ND 18<br>ND 16<br>ND 18<br>ND 36<br>ND 28<br>ND 38 *+<br>ND 42<br>ND 72<br>ND 72<br>ND 30<br>ND 30<br>ND 30<br>ND 16<br>ND 16<br>ND 16<br>ND 16<br>ND 17<br>ND 18<br>ND 18<br>ND 18<br>ND 28<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 30<br>ND 16<br>ND  | ND 8 H ND 4.3 H ND 4.3 H ND 5.4 H ND 23 H ND 17 H ND 5.5 H ND 5.5 H ND 5.5 H ND 7.5 H ND 4.6 H ND 19 H ND 19 H ND 11 H ND 10 H ND 10 H ND 10 H ND 11 H ND 18 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 8-Espane 8-Espa | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.83 ND 4.6 ND 3.3 ND 1.1 ND 1.7 ND 1.7 ND 1.5 ND 38 ND 0.8 ND 0.8 ND 1.4 ND 1.2 ** ND 2.6 620 ND 1.5 ND 2.6 620 ND 1.7 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 1.1 ND 1.2 ND 2.8 ND 1.3 ND 3.2 ND 0.84 ND 1.3 ND 1.4 ND 1.1 ND 1.2 ND 4.8 ND 1.2 ND 4.8 ND 1.2 ND 4.8 ND 1.1 ND 1.1 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20                                                                                                                                                                                                                                                                               | ND 25 ND 50 ND 100 ND 25 ND 100 ND 25 ND 100 ND 25 ND 50 ND 25 ND 50 ND 50 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25 ND 25 ND 50 ND 25 ND 50 ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 2.5 ND 5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.083 ND 0.46 3.2 ND 0.11 ND 0.17 ND 0.17 ND 0.15 13 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.12 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.18 ND 0.18 ND 0.18 ND 0.19 ND 0.36 ND 0.19 ND 0.36 ND 0.37 ND 0.36 ND 0.37 ND 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.083 ND 0.46 ND 0.33 ND 0.11 ND 0.17 ND 0.17 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.19 ND 0.19 ND 0.19 ND 0.12 ND 0.36 ND 0.07 12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.17 ND 0.15 ND 0.16 ND 0.17 ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.083 ND 0.46 ND 0.33 ND 0.11 ND 0.17 ND 0.17 ND 0.15 ND 3.8 ND 0.08 ND 0.09 ND 0.18 ND 0.19 ND 0.19 ND 0.21 ND 0.21 ND 0.25 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.15 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                                                                      | ND 0.33<br>ND 1.8<br>ND 1.3<br>ND 0.44<br>ND 0.68<br>ND 0.4<br>ND 0.6<br>ND 15<br>ND 0.32<br>ND 0.36<br>ND 0.72<br>ND 0.56<br>ND 0.76<br>ND 0.76<br>ND 0.76<br>ND 0.76<br>ND 0.78<br>ND 0.48<br>ND 0 | ND 50 ND 100 ND 200 ND 50 ND 200 ND 50 ND 100 ND 1000 ND 1000 ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 100 ND 200 ND 400 ND 400 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 200 ND 100 ND 100 ND 100 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 200 ND 400 ND 800 ND 800 ND 200 ND 800 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 17 ND 92 ND 66 ND 22 ND 34 ND 20 ND 30 ND 760 ND 16 ND 18 ND 36 ND 28 ND 38 *+ ND 42 ND 72 ND 72 ND 74 ND 14 ND 48 ND 24 ND 14 ND 48 ND 24 ND 24 ND 24 ND 24 ND 25 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 4.2 H ND 23 H ND 23 H ND 17 H ND 5.5 H ND 5.5 H ND 5.6 H ND 7.5 H ND 4 H ND 4.6 H ND 9.5 H ND 9.5 H ND 9.5 H ND 11 H ND 9.5 H ND 11 H ND 18 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Lispropyltoluene Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloromethane Chloroform Chloromethane  cis-1,2-Dichloroethene cis-1,3-Dichloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dischlorofifluoromethane (CFC 12) Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride MT8E Naphthalene n-Butylbenzene sec-Butylbenzene sec-Butylbenzene Tetrachloroethene (PCC) Toluene Tetras-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene (TCC) Trichloroethene (TCC) Trichloroethene (TCC) Trichloroethene (TCC) Trichlorofloromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.1 ND 1.7 ND 1.7 ND 1 ND 1.5 ND 38 ND 0.8 ND 0.91 ND 1.8 ND 1.4 ND 1.9*+ ND 2.1 ND 3.6 ND 1.2*+ ND 0.7 24 ND 1.2*+ ND 0.7 24 ND 1.2 ND 3.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.7 ND 3.2 ND 0.84 ND 1.1 ND 1.2 ND 4.8 ND 1.2 ND 4.8 ND 1.3 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 10 ND 40 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10                                                                                                                                                                                                                                                                                                                                           | ND 25 ND 100 ND 25 ND 500 ND 100 ND 25 ND 25 ND 25 ND 25 ND 25 ND 500 ND 500 ND 500 ND 500 ND 500 ND 25 ND 25 ND 25 ND 500 ND 25 ND 500 ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 2.5 ND 10 ND 2.5 ND 50 ND 5 | ND 0.11 ND 0.17 ND 0.17 ND 0.18 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.37 ND 0.15 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.17 ND 0.18 ND 0.18 ND 0.19 ND 0.20 ND 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.11 ND 0.17 ND 0.17 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.17 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.11 ND 0.17 ND 0.17 ND 0.1 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.21 ND 0.36 ND 0.22 ND 0.36 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.44<br>ND 0.68<br>ND 0.6<br>ND 0.5<br>ND 0.32<br>ND 0.36<br>ND 0.72<br>ND 0.36<br>ND 0.72<br>ND 0.56<br>ND 0.76<br>ND 0.76<br>ND 0.48<br>ND 0.48<br>ND 0.28<br>7.5<br>ND 0.48<br>ND 0.28<br>ND 0.48<br>ND 0.28<br>ND 0.48<br>ND 0.28<br>ND 0.48<br>ND 0.48<br>ND 0.28<br>ND 0.48<br>ND 0 | ND 50 ND 200 ND 100 ND 50 ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 100 ND 400 ND 200 ND 100 ND 200 ND 100 ND 200 ND 200 ND 200 ND 400 ND 100 ND 100 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 200 ND 800 ND 200 ND 400 ND 800 ND 200 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 22<br>ND 34<br>ND 20<br>ND 30<br>ND 760<br>ND 16<br>ND 18<br>ND 36<br>ND 28<br>ND 38 *+<br>ND 42<br>ND 72<br>ND 24<br>ND 14<br>ND 14<br>ND 24<br>ND 24<br>ND 24<br>ND 24<br>ND 24<br>ND 25<br>ND 26<br>ND 26<br>ND 26<br>ND 27<br>ND 27<br>ND 27<br>ND 27<br>ND 27<br>ND 27<br>ND 28<br>ND | ND 5.5 H<br>ND 8.5 H<br>ND 5 H<br>ND 7.5 H<br>ND 190 H<br>ND 4 H<br>ND 4.6 H<br>ND 7.7 H<br>ND 9.5 H<br>ND 11 H<br>ND 18 H<br>ND 6 H<br>ND 3.5 H<br>ND 12 H<br>ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-Chlorotoluene 4-Isopropyltoluene A-Isopropyltoluene Romene Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroethane Chloromethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Chloroffluoromethane Chloroffluoromethane Chloroffluoromethane Chloroffluoromethane Chloroethane Chloroethane CFC 12) Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride MTEE Naphthalene n-Propylbenzene sec-Butylbenzene sec-Butylbenzene Styrene tetr-Butylbenzene Tetrachloroethene (PCE) Toluene Tetras-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethune (FCC 1) Trichlorofluoromethane (FCC 11) Vinyl Acetale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 1 ND 1.5 ND 1.5 ND 38 ND 0.8 ND 0.91 ND 1.8 ND 1.4 ND 1.9 "+ ND 2.1 ND 3.6 ND 1.2 "+ ND 0.7 24 ND 1.2 ND 1.6 ND 1.2 "+ ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.3 "+ ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.1 ND 1.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 10 ND 20 ND 200 ND 200 ND 10 ND 20 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 40 ND 20 ND 10 ND 40 ND 20 ND 10 ND 40 ND 20 ND 10 ND 10 ND 20 ND 10 ND 40 ND 20 ND 10 ND 10 ND 20 ND 10 ND 40 ND 20 ND 10 ND 10 ND 10 ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 25 ND 50 ND 500 ND 25 ND 50 ND 25 ND 25 ND 50 ND 25 ND 50 ND 25 ND 100 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 2.5 ND 50 ND 2.5 ND 50 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.1 ND 0.15 13 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.36 ND 0.12 ND 0.07 2.6 ND 0.12 ND 0.26 ND 0.12 ND 0.26 ND 0.15 ND 0.16 ND 0.15 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.32 ND 0.32 ND 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.1 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.07 12 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.17 ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.1 ND 0.15 ND 0.15 ND 3.8 ND 0.08 ND 0.091 ND 0.18 ND 0.19 ND 0.21 ND 0.36 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.07 8.8 ND 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.4 ND 0.6 ND 15 ND 0.32 ND 0.36 ND 0.72 ND 0.56 ND 0.76 ND 0.84 ND 1.4 ND 0.48 ND 0.28 7.5 ND 0.48 ND 0.48 ND 0.48 ND 0.48 ND 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 50 ND 100 ND 1000 ND 1000 ND 50 ND 100 ND 50 ND 50 ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 100 ND 200 ND 200 ND 100 ND 100 ND 100 ND 100 ND 200 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 200 ND 400 ND 200 ND 200 ND 200 ND 200 ND 200 ND 400 ND 200 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 20<br>ND 30<br>ND 760<br>ND 16<br>ND 18<br>ND 36<br>ND 28<br>ND 38 *+<br>ND 42<br>ND 72<br>ND 24<br>ND 14<br>ND 14<br>ND 24<br>ND 14<br>ND 24<br>ND 24<br>ND 25<br>ND 26<br>ND 26<br>ND 27<br>ND 27<br>ND 27<br>ND 28<br>ND 28<br>ND 38 *+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 5 H ND 7.5 H ND 190 I ND 4 H ND 4.6 H ND 9.5 H ND 19 I ND 11 H ND 18 H ND 6 H ND 3.5 H ND 13 H ND 13 H ND 13 H ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzene Bromobenzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Elitylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobuly Ketone Methyl Isobuly Ketone Methylene Chloride MTBE Naphthalene n-Propylbenzene sec-Butylbenzene sec-Butylbenzene Tertachloroethene (PCE) Tolluene Tetrashloroethene (PCE) Tolluene Trichloroethene (TCE) Trichloroethene (TCE) Trichloroethene (TCE) Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.8 ND 0.91 ND 1.8 ND 1.4 ND 1.9 *+ ND 2.1 ND 3.6 ND 1.2 *+ ND 0.7 24 ND 1.6 ND 1.5 ND 1.6 ND 1.7 ND 3.6 ND 1.7 ND 3.6 ND 1.7 ND 3.6 ND 1.7 ND 3.1 ND 1.6 ND 1.7 ND 3.2 ND 3.8 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.8 ND 1.1 ND 1.1 ND 1.1 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO 10  ND 20  ND 20  ND 10  ND 20  ND 20  ND 20  ND 10  ND 10  ND 10  ND 10  ND 20  ND 10  ND 20  ND 10  ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 25 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 2.5 ND 5 ND 5 ND 5 ND 10 ND 2.5 ND 2.5 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.08 ND 0.091 ND 0.18 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 2.6 ND 0.12 ND 0.26 4.3 ND 0.15 ND 0.16 ND 0.17 ND 0.36 ND 0.17 ND 0.36 ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.08 ND 0.091 ND 0.18 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 12 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.16 ND 0.17 ND 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.08 ND 0.091 ND 0.18 ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.26 1.8 ND 0.15 ND 0.15 ND 0.15 ND 0.16 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.32<br>ND 0.36<br>ND 0.72<br>ND 0.56<br>ND 0.76<br>ND 0.84<br>ND 1.4<br>ND 0.48<br>ND 0.28<br>7.5<br>ND 0.48<br>ND 0.48<br>ND 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 50<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 50<br>ND 50<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 100 ND 200 ND 200 ND 100 ND 200 ND 200 ND 200 ND 200 ND 100 ND 100 ND 100 ND 100 ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 200 ND 400 ND 400 ND 200 ND 400 ND 400 ND 400 ND 200 ND 400 ND 800 ND 200 ND 200 ND 200 ND 400 ND 400 ND 400 ND 400 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 16 ND 18 ND 36 ND 28 ND 38*+ ND 42 ND 72 ND 24 ND 14 ND 48 ND 24 ND 24 ND 24 ND 52 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 4 H ND 4.6 H ND 9 H ND 7 H ND 9.5 H ND 11 H ND 18 H ND 6 H ND 12 H ND 12 H ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Cis-1,3-Dichloroethene cis-1,3-Dichloroethene Dibromochloromethane Dibromo | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 1.8 ND 1.4 ND 1.9 *+ ND 2.1 ND 3.6 ND 1.2 *+ ND 0.7 24 ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.3 ND 0.84 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 1.3 *+ ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.2 ND 4.8 ND 1.8 ND 1.8 ND 1.8 ND 1.8 ND 1.8 ND 1.8 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 20 ND 10 ND 20 ND 20 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 10 ND 20 ND 10 ND 10 ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 50 ND 25 ND 50 ND 100 ND 25 ND 25 ND 50 ND 50 ND 50 ND 25 ND 50 ND 50 ND 50 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 5 ND 2.5 ND 5 ND 10 ND 2.5 ND 5 ND 5 ND 10 ND 2.5 ND 5 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 2.66 ND 0.12 ND 0.26 ND 0.12 ND 0.26 ND 0.15 ND 0.16 ND 0.17 ND 0.16 ND 0.17 ND 0.32 ND 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 12 ND 0.12 ND 0.26 15 ND 0.15 ND 0.16 ND 0.11 ND 0.16 ND 0.17 ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.18 ND 0.14 ND 0.19 ND 0.21 ND 0.36 ND 0.12 ND 0.07 8.8 ND 0.12 ND 0.26 1.8 ND 0.15 ND 0.15 ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.72<br>ND 0.56<br>ND 0.76<br>ND 0.84<br>ND 0.48<br>ND 0.28<br>7.5<br>ND 0.48<br>ND 1<br>24<br>ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 100 ND 50 ND 100 ND 100 ND 100 ND 200 ND 50 ND 50 ND 100 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 200  ND 100  ND 200  ND 200  ND 200  ND 400  ND 100  ND 100  ND 100  ND 200  ND 200  ND 200  ND 200  8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 400 ND 200 ND 400 ND 400 ND 400 ND 800 ND 200 ND 200 ND 200 ND 400 ND 400 ND 400 ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 36<br>ND 28<br>ND 38 *+<br>ND 42<br>ND 72<br>ND 24<br>ND 14<br>ND 14<br>ND 48<br>ND 24<br>ND 52<br>7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 9 H ND 7 H ND 9.5 H ND 11 H ND 18 H ND 6 H ND 3.5 H ND 12 H ND 6 H ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromomethane Dibromomethane Dichlorodifluoromethane Methyl Isobutyl Ketone Methylenzene Methyl Isobutyl Ketone Methylene Chloride MTBE Naphthalene n-Butylbenzene sec-Butylbenzene sec-Butylbenzene sec-Butylbenzene sec-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropene Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2.1 ND 3.6 ND 1.2 *+ ND 0.7 24 ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 2.3 *+ ND 1.1 ND 1.1 ND 1.6 ND 1.7 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 2.3 *+ ND 1.1 ND 1.1 ND 1.6 ND 1.7 ND 1.1 ND 1.1 ND 1.6 ND 1.7 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 20 ND 40 ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 50 ND 100 ND 25 ND 25 ND 50 ND 50 ND 50 ND 50 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25 ND 50 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 5 ND 10 ND 2.5 ND 2.5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.21<br>ND 0.36<br>ND 0.12<br>ND 0.07<br>2.6<br>ND 0.12<br>ND 0.26<br>4.3<br>ND 0.15<br>ND 0.16<br>ND 0.16<br>ND 0.32<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.21<br>ND 0.36<br>ND 0.12<br>ND 0.07<br>12<br>ND 0.12<br>ND 0.26<br>15<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.21<br>ND 0.36<br>ND 0.12<br>ND 0.07<br>8.8<br>ND 0.12<br>ND 0.26<br>1.8<br>ND 0.15<br>ND 0.16<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.84<br>ND 1.4<br>ND 0.48<br>ND 0.28<br>7.5<br>ND 0.48<br>ND 1<br>24<br>ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 100<br>ND 200<br>ND 50<br>ND 50<br>ND 100<br>ND 100<br>ND 100<br>ND 100<br>4200<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 200<br>ND 400<br>ND 100<br>ND 100<br>ND 200<br>ND 200<br>ND 200<br>ND 200<br>8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 400<br>ND 800<br>ND 200<br>ND 200<br>ND 400<br>ND 400<br>ND 400<br>11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 42<br>ND 72<br>ND 24<br>ND 14<br>ND 48<br>ND 24<br>ND 52<br>7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 11 H<br>ND 18 H<br>ND 6 H<br>ND 3.5 H<br>ND 12 H<br>ND 6 H<br>ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane CFC 12) Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methylene Chloride MTBE Naphthalene n-Butylbenzene sec-Butylbenzene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene (PCE) Toluene Tetrans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene (FCE) Trichloroethene (FCE) Trichloroethone (FCE) Trichloroethone (FCE) Trichlorofluoromethane (CFC 11) Vinyl Acetale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 1.2 *+ ND 0.7 24 ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 2.3 *+ ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.2 ND 4.8 ND 1.1 ND 1.8 ND 1.1 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 10 ND 10 ND 10 ND 20 ND 20 ND 20 ND 20 ND 10 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 40 ND 20 ND 10 ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 25<br>ND 25<br>ND 50<br>ND 50<br>ND 50<br>ND 50<br>ND 25<br>ND 25<br>ND 25<br>ND 25<br>ND 50<br>ND 50<br>ND 50<br>ND 50<br>ND 50<br>ND 50<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 2.5<br>ND 2.5<br>ND 5<br>ND 5<br>ND 5<br>21<br>ND 2.5<br>ND 2.5<br>ND 2.5<br>ND 2.5<br>ND 2.5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.12<br>ND 0.07<br>2.6<br>ND 0.12<br>ND 0.26<br>4.3<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12<br>ND 0.07<br>12<br>ND 0.12<br>ND 0.26<br>15<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12<br>ND 0.07<br>8.8<br>ND 0.12<br>ND 0.26<br>1.8<br>ND 0.15<br>ND 0.16<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.48<br>ND 0.28<br>7.5<br>ND 0.48<br>ND 1<br>24<br>ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 50<br>ND 50<br>ND 100<br>ND 100<br>ND 100<br>4200<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 100<br>ND 100<br>ND 200<br>ND 200<br>ND 200<br>ND 200<br>8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 200<br>ND 200<br>ND 400<br>ND 400<br>ND 400<br>11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 24<br>ND 14<br>ND 48<br>ND 24<br>ND 52<br>7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 6 H<br>ND 3.5 H<br>ND 12 H<br>ND 6 H<br>ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chloroform Chloromethane cis-1,3-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane  | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 1.2 ND 2.6 620 ND 1.5 ND 1.6 ND 1.7 ND 3.2 ND 0.84 ND 2.3*+ ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.8 ND 1.2 ND 4.8 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.8 ND 1.8 ND 1.1 ND 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 20 ND 20 S 90 ND 10 ND 10 ND 10 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 20 ND 10 ND 40 ND 20 ND 10 ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 50 ND 50 1800 ND 25 ND 25 ND 25 ND 25 ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 5 ND 5 21 ND 2.5 ND 2.5 ND 2.5 ND 5 ND 5 ND 5 ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.12<br>ND 0.26<br>4.3<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32<br>ND 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.12<br>ND 0.26<br>15<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.12<br>ND 0.26<br>1.8<br>ND 0.15<br>ND 0.16<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.48<br>ND 1<br>24<br>ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 100<br>ND 100<br>4200<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 200<br>ND 200<br>8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 400<br>ND 400<br>11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 24<br>ND 52<br>7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 6 H<br>ND 13 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Dibromochloromethane Dichlorodifluoromethane (CFC 12) Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride MTBE Naphthalene n-Butylbenzene sec-Butylbenzene sec-Butylbenzene set-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropene Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 620<br>ND 1.5<br>ND 1.6<br>ND 1.7<br>ND 3.2<br>ND 0.84<br>ND 2.3 *+<br>ND 1.1<br>ND 1.1<br>ND 1.6<br>ND 1.2<br>ND 4.8<br>ND 1.8<br>ND 1.2<br>ND 4.8<br>ND 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 590  ND 10  ND 10  ND 10  ND 20  ND 10  ND 20  ND 10  ND 20  ND 10  ND 20  ND 10  ND 40  ND 40  ND 10  ND 20  ND 10  ND 20  ND 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1800<br>ND 25<br>ND 25<br>ND 25<br>ND 50<br>ND 25<br>ND 50<br>ND 25<br>ND 50<br>ND 25<br>ND 100<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>ND 2.5<br>ND 2.5<br>ND 2.5<br>ND 5<br>ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32<br>ND 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>ND 0.15<br>ND 0.16<br>ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8<br>ND 0.15<br>ND 0.16<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24<br>ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4200<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibromomethane Dichlorodifluoromethane (CFC 12) Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride MTSE Naphthalene n-Butylbenzene sec-Butylbenzene styrene tert-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropopene Trichloroethene (TCC) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.7<br>ND 3.2<br>ND 0.84<br>ND 2.3 *+<br>ND 1.1<br>ND 1.1<br>ND 1.6<br>ND 1.2<br>ND 4.8<br>ND 1.8<br>ND 1.8<br>ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 10<br>ND 20<br>ND 10<br>ND 20<br>ND 10<br>ND 40<br>ND 20<br>ND 10<br>ND 20<br>ND 10<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 25<br>ND 50<br>ND 25<br>ND 50<br>ND 25<br>ND 100<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 2.5<br>ND 5<br>ND 2.5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.17<br>ND 0.32<br>ND 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 7.5 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hexachlorobutadiene Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride MTBE Naphthalene n-Butylbenzene sec-Butylbenzene sec-Butylbenzene sec-Butylbenzene sec-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloropropene Trichloroethene (TCE) Trichloroftuoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | рд/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2.3 *+ ND 1.1 ND 1.1 ND 1.6 ND 1.2 ND 4.8 ND 1.8 ND 1.1 ND 1.1 ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 20<br>ND 10<br>ND 40<br>ND 20<br>ND 10<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 50<br>ND 25<br>ND 100<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND O OOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.68<br>ND 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 50<br>ND 50<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 100<br>ND 100<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 200<br>ND 200<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 32<br>ND 34<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 8 H<br>ND 8.5 H<br>290 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Methyl Isobutyl Ketone  Methylene Chloride  MTBE  Naphthalene  n-Butylbenzene  n-Propylbenzene  sec-Butylbenzene  Styrene  tert-Butylbenzene  Tetrachloroethene (PCE)  Toluene  trans-1,2-Dichloroethene  trans-1,3-Dichlorop opene  Trichlorofloroethene (TCE)  Trichlorofloroethene (TCC)  Trichlorofloroethene (TCC)  Trichlorofloroethene (TCC)  Trichloroethene (TCC)  Trichloroethene (TCC)  Trichloroethene (TCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 1.1<br>ND 1.6<br>ND 1.2<br>ND 4.8<br>ND 1.8<br>ND 1.1<br>ND 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 40<br>ND 20<br>ND 10<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 100<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.084<br>ND 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.34<br>ND 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 50<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 100<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 200<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 17<br>ND 46 *+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 4.2 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Styrene terr-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichlorop opene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 4.8<br>ND 1.8<br>ND 1.1<br>ND 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 10<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.11<br>ND 0.11<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.11<br>ND 0.11<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.11<br>ND 0.11<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.44<br>ND 0.44<br>ND 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 50<br>ND 200<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 100<br>ND 400<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 200<br>ND 800<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 22<br>ND 22<br>ND 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 5.5 F<br>ND 5.5 F<br>ND 8 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| n-Propylbenzene sec-Butylbenzene Styrene terr-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene (TCE) Trichloroftuoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 1.1<br>ND 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND ZU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 50<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 2.5<br>ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.12<br>ND 0.48<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12<br>ND 0.48<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.12<br>ND 0.48<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.48<br>ND 1.9<br>ND 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 50<br>ND 100<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 100<br>ND 200<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 200<br>ND 400<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 24<br>ND 96<br>ND 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 6 H<br>ND 24 F<br>ND 9 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tert-Butylbenzene Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 20<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 50<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.11<br>ND 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.11<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.11<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.44<br>ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 100<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 200<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 400<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 22<br>ND 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 5.5 H<br>ND 7 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropt opene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 10<br>ND 20<br>ND 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 25<br>ND 50<br>ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 2.5<br>ND 5<br>ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.13<br>ND 0.13<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.13<br>ND 0.13<br>0.11 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.13<br>ND 0.13<br>0.22 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.52<br>ND 0.52<br>ND 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 50<br>ND 100<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 100<br>ND 200<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 200<br>ND 400<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 26<br>ND 26<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 6.5 H<br>ND 6.5 H<br>7.3 I,H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.95<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 10<br>ND 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 25<br>ND 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.095<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.095<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.095<br>5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.38<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 50<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 100<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 200<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 19<br>ND 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 4.8 F<br>21 J,H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.6<br>400<br>ND 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 10<br>840<br>ND 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 25<br>ND 25<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 2.5<br>ND 2.5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.16<br>1.3<br>ND 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.16<br>5.4<br>ND 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.16<br>3.4<br>ND 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.64<br>9.7<br>ND 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 50<br>5700<br>ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 100<br>350<br>ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 200<br>ND 200<br>ND 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 32<br>890<br>ND 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 8 H<br>910 H<br>ND 6.5 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 1.9<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 40<br>ND 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 100<br>420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 10<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.19<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.19<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.19<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.76<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 200<br>ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 400<br>340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 800<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 38<br>540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 9.5 H<br>1100 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 14 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon  Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.2<br>ND 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br><b>SM 4500S.</b><br>ND 0.05 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71<br>2-D - SULFIDE<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1<br>ND 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 1<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bicarbonate Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Carbonate Hydroxide<br>Hydroxide Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 5<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 830<br>PA 300.0 - NIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nitrate Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 1.3<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 1.3<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 1.3<br>ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.5<br>ND 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.5<br>54<br>ANESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.5<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.5<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.25 ,H<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.25<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.25<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arsenic Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 19 H<br>500 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>5400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19<br>3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 J,H<br>2600 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 J<br>870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - HYDROGEN<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4-Methylpentanoic Acid Acetic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AM23G - VOLA<br>ND 0.056<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.56<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Butyric Acid Formic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4 J<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.058<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.58<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5<br>0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4<br>0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9 J<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13 J<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i-Hexanoic Acid Isopentanoic Acid Lactic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.65 J<br>ND 0.61<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.058<br>ND 0.061<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.056<br>0.45 J<br>ND 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.45 J<br>0.79<br>ND 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.58<br>ND 0.61<br>ND 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.058<br>ND 0.061<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.58<br>ND 0.61<br>ND 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.58<br>ND 0.61<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.058<br>ND 0.061<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.056<br>0.36 J<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.085 J<br>0.13 J<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.58<br>ND 0.61<br>ND 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.058<br>ND 0.061<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pentanoic Acid Propionic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.56<br>ND 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.056<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.65<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.56<br>4.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.056<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.56<br>0.64 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.56<br>ND 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.056<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.058 J<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.056<br>ND 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pyruvic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.46 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Carbon Dioxide Ethane Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 219<br>ND 0.00017<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.7<br>0.00012 J<br>ND 0.00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0011<br>0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0028<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0022<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.4<br>0.0012<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0017<br>0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0034<br>0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.6<br>0.0071<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45<br>0.0064<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.81<br>0.0082<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.9<br>0.0057<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.9<br>ND 0.0001<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0035 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.3<br>QuantArray-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7<br><b>hior - MICROB</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8<br>VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APS BVC CER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63700<br><0.5<br>39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1190<br>< 0.5<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8890000<br>838<br>795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1080000<br><0.5<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 358000<br><0.5<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13400<br>< 0.5<br>< 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 342000<br>0.4 J<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFR DCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.8<br><4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 4.6<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.4<br>69.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <4.5<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4.7<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 4.7<br>< 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.6<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DCAR DCM DCMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <4.8<br><4.8<br><4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 4.6<br>< 4.6<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65000<br>6320<br>6240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <4.5<br>1850<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.7<br><4.7<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 4.7<br>< 4.7<br>< 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.6<br>1470<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DECO DHBt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36300<br>21600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 566<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.8<br>4520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18100<br>82400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3480<br>12800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 430<br>771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20700<br>60300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DHC DHG DSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10000<br>14400<br>16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.4<br>679<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4500<br>29800<br>24800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6230<br>7940<br>89300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16600<br>8580<br>13500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 338<br>< 4.7<br>< 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17200<br><4.6<br>2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DSM EBAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.8<br>2210000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 4.6<br>393000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22700<br>226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.2<br>7860000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8<br>2430000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222<br>658000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18200<br>11800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EtnC EtnE MGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <4.8<br>134<br>5730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108<br>277<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21500<br>128000<br>11400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174<br>387<br>46500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.2<br>50.3<br>10800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8<br>95.8<br>0.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.6<br><4.6<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCE-1 PCE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.8<br>1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 4.6<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102<br><6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <4.5<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4.7<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 4.7<br>1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.6<br>37900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHE<br>RDEG<br>RMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.1<br><4.8<br><4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 282<br>495<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <6.6<br><6.6<br><6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2250<br>1120<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.4<br>298<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5 J<br>< 4.7<br>< 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26400<br>185000<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMMO<br>TCBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cells/mL<br>Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.8<br><4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 4.6<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <6.6<br><6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6700<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 891<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 4.7<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 474<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.5<br>< 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <6.6<br><6.6<br><6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100<br><4.5<br><4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2670<br><4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2740<br><4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Sample Date                                                                          |                                  | S146A<br>8/19/21                 | S146A<br>11/10/21            | S158A<br>9/14/20                 | S158A<br>12/17/21           | S158A<br>1/20/21              | S158A<br>2/17/21              | S158A<br>5/19/21                 | S158A<br>8/18/21              | S158A<br>11/9/21           | \$159A<br>9/15/20             | S159A<br>12/15/20       | S159A<br>1/19/21        | S159A<br>1/19/21        |
|--------------------------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------------|-----------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|----------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|
| Sample Purpose                                                                       |                                  | REG                              | REG                          | REG                              | REG                         | REG                           | REG                           | REG                              | REG                           | REG                        | REG                           | REG                     | REG                     | FD                      |
| Analysis Type Parameter                                                              | Result Unit                      | INIT<br>Result                   | INIT<br>Result               | INIT<br>Result                   | INIT<br>Result              | INIT<br>Result                | INIT<br>Result                | INIT<br>Result                   | INIT<br>Result                | INIT<br>Result             | INIT<br>Result                | INIT<br>Result          | INIT<br>Result          | INIT<br>Result          |
|                                                                                      | <u> </u>                         | 1                                | l .                          | EPA 82                           | 608 - VOLATIL               | E ORGANIC CC                  | MPOUNDS                       |                                  | 1                             | l                          | 1                             |                         |                         | 1                       |
| 1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2-Tetrachloroethane          | μg/L<br>μg/L<br>μg/L             | ND 10<br>4600<br>ND 10           | ND 25<br>6100<br>ND 25       | ND 1<br>ND 1<br>ND 1             | ND 250<br>ND 250<br>ND 250  | ND 500<br>ND 500<br>ND 500    | ND 50<br>ND 50<br>ND 55       | ND 2 H<br>350 H<br>ND 2 H        | ND 0.2<br>79<br>ND 0.2        | ND 10 *+<br>860<br>ND 10   | ND 5<br>ND 5<br>ND 5          | ND 5<br>ND 5<br>ND 5    | ND 10<br>ND 10<br>ND 10 | ND 10<br>ND 10<br>ND 10 |
| 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane (CFC 113) | μg/L<br>μg/L                     | ND 11<br>ND 12                   | ND 28<br>ND 30               | ND 1<br>1500                     | ND 250<br>2900              | ND 500                        | ND 60<br>690                  | ND 2.2 H<br>ND 2.4 H             | ND 0.22<br>ND 0.24            | ND 11<br>ND 12             | ND 5<br>6.9                   | ND 5<br>6.8             | ND 10<br>ND 10          | ND 10<br>ND 10          |
| 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE)                            | μg/L<br>μg/L                     | 69<br>110                        | 93 J<br>140                  | 33<br>19                         | ND 250<br>ND 250            | ND 500<br>ND 500              | 50 J<br>ND 65                 | 35 H<br>ND 2.6 H                 | 17<br>ND 0.26                 | 31 J<br>ND 13              | 5.7<br>ND 5                   | ND 5<br>ND 5            | ND 10<br>ND 10          | ND 10<br>ND 10          |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene                                           | μg/L<br>μg/L                     | ND 12<br>ND 40                   | ND 30<br>ND 100              | ND 1<br>ND 2                     | ND 250<br>ND 500            | ND 500<br>ND 1000             | ND 60<br>ND 200               | ND 2.4 H<br>ND 8 H               | ND 0.24<br>ND 0.8             | ND 12<br>ND 40             | ND 5<br>ND 10                 | ND 5<br>ND 10           | ND 10<br>ND 20          | ND 10<br>ND 20          |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene                 | μg/L<br>μg/L<br>μg/L             | ND 13<br>ND 25<br>ND 32          | ND 33<br>ND 63<br>ND 80      | ND 2<br>ND 2<br>ND 2             | ND 500<br>ND 500<br>ND 500  | ND 1000<br>ND 1000<br>ND 1000 | ND 65<br>ND 130<br>ND 160     | ND 2.6 H<br>ND 5 H<br>ND 6.4 H   | ND 0.26<br>ND 0.5<br>ND 0.64  | ND 13<br>ND 25<br>ND 32    | ND 10<br>ND 10<br>ND 10       | ND 10<br>ND 10<br>ND 10 | ND 20<br>ND 20<br>ND 20 | ND 20<br>ND 20<br>ND 20 |
| 1,2-Dibromo-3chloropropane (DBCP) 1,2-Dibromoethane (EDB)                            | μg/L<br>μg/L                     | ND 20<br>ND 12                   | ND 50<br>ND 30               | ND 2<br>ND 1                     | ND 500<br>ND 250            | ND 1000 *+<br>ND 500          | ND 100<br>ND 60               | ND 4 H<br>ND 2.4 H               | ND 0.4<br>ND 0.24             | ND 20<br>ND 12             | ND 10<br>ND 5                 | ND 10<br>ND 5           | ND 20<br>ND 10          | ND 20<br>ND 10          |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane                                            | μg/L<br>μg/L                     | 59<br>ND 14                      | 87 J<br>ND 35                | 24<br>ND 1                       | ND 250<br>ND 250            | ND 500<br>ND 500              | ND 49<br>ND 70                | 11 H<br>ND 2.8 H                 | 6.4<br>ND 0.28                | 13 J<br>ND 14              | ND 5<br>ND 5                  | ND 5<br>ND 5            | ND 10<br>ND 10          | ND 10<br>ND 10          |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                       | μg/L<br>μg/L<br>μg/L             | ND 15<br>ND 16<br>ND 8.6         | ND 38<br>ND 40<br>ND 22      | ND 1<br>ND 1<br>ND 1             | ND 250<br>ND 250<br>ND 250  | ND 500<br>ND 500<br>ND 500    | ND 75<br>ND 80<br>ND 43       | ND 3 H<br>ND 3.2 H<br>ND 1.7 H   | ND 0.3<br>ND 0.32<br>ND 0.17  | ND 15<br>ND 16<br>ND 8.6   | ND 5<br>ND 5<br>ND 5          | ND 5<br>ND 5<br>ND 5    | ND 10<br>ND 10<br>ND 10 | ND 10<br>ND 10<br>ND 10 |
| 1,3-Dichloropropane 1,4-Dichlorobenzene                                              | μg/L<br>μg/L                     | ND 10<br>ND 8.3                  | ND 25<br>ND 21               | ND 2                             | ND 500<br>ND 250            | ND 1000<br>ND 500             | ND 50<br>ND 42                | ND 2 H<br>ND 1.7 H               | ND 0.2<br>ND 0.17             | ND 10<br>ND 8.3            | ND 10<br>ND 5                 | ND 10<br>ND 5           | ND 20<br>ND 10          | ND 20<br>ND 10          |
| 2,2-Dichloropropane<br>2-Butanone (MEK)                                              | μg/L<br>μg/L                     | ND 46<br>ND 33                   | ND 120<br>ND 83              | ND 2<br>ND 4                     | ND 500<br>ND 1000           | ND 1000<br>ND 2000            | ND 230<br>ND 170              | ND 9.2 H<br>11 J,H               | ND 0.92<br>4.8                | ND 46<br>ND 33             | ND 10<br>ND 20                | ND 10<br>31             | ND 20<br>ND 40          | ND 20<br>ND 40          |
| 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene                                           | μg/L<br>μg/L                     | ND 11<br>ND 17<br>ND 10          | ND 28<br>ND 43<br>ND 25      | ND 1<br>ND 4<br>ND 1             | ND 250<br>ND 1000<br>ND 250 | ND 500<br>ND 2000<br>ND 500   | ND 55<br>ND 85<br>ND 50       | ND 2.2 H<br>ND 3.4 H<br>ND 2 H   | ND 0.22<br>ND 0.34<br>ND 0.2  | ND 11<br>ND 17<br>ND 10    | ND 5<br>ND 20<br>ND 5         | ND 5<br>ND 20<br>ND 5   | ND 10<br>ND 40<br>ND 10 | ND 10<br>ND 40<br>ND 10 |
| 4-Isopropyltoluene Acetone                                                           | μg/L<br>μg/L<br>μg/L             | ND 15<br>ND 380                  | ND 38<br>ND 950              | ND 2                             | ND 500<br>ND 5000           | ND 1000<br>ND 10000           | ND 75<br>ND 1900              | ND 3 H<br>ND 76 H                | ND 0.2<br>ND 0.3              | ND 15<br>ND 380            | ND 10<br>ND 100               | ND 10<br>ND 100         | ND 20<br>ND 200         | ND 20<br>ND 200         |
| Benzene<br>Bromobenzene                                                              | μg/L<br>μg/L                     | ND 8<br>ND 9.1                   | ND 20<br>ND 23               | ND 1<br>ND 2                     | ND 250<br>ND 500            | ND 500<br>ND 1000             | ND 40<br>ND 46                | ND 1.6 H<br>ND 1.8 H             | ND 0.16<br>ND 0.18            | ND 8<br>ND 9.1             | ND 5<br>ND 10                 | ND 5<br>ND 10           | ND 10<br>ND 20          | ND 10<br>ND 20          |
| Bromochloromethane<br>Bromodichloromethane                                           | μg/L<br>μg/L                     | ND 18<br>ND 14                   | ND 45<br>ND 35               | ND 2<br>ND 1                     | ND 500<br>ND 250            | ND 1000<br>ND 500             | ND 90<br>ND 70                | ND 3.6 H<br>ND 2.8 H             | ND 0.36<br>ND 0.28            | ND 18<br>ND 14             | ND 10<br>ND 5                 | ND 10<br>ND 5           | ND 20<br>ND 10          | ND 20<br>ND 10          |
| Bromoform Bromomethane Carbon Disulfide                                              | μg/L<br>μg/L<br>μg/L             | ND 19<br>ND 21<br>ND 36          | ND 48<br>ND 53<br>ND 90      | ND 2<br>ND 2<br>ND 4             | ND 500<br>ND 500<br>ND 1000 | ND 1000<br>ND 1000<br>ND 2000 | ND 95<br>ND 110<br>ND 180     | ND 3.8 H<br>ND 4.2 H<br>ND 7.2 H | ND 0.38<br>ND 0.42<br>ND 0.72 | ND 19 *+<br>ND 21<br>ND 36 | ND 10<br>ND 10<br>ND 20       | ND 10<br>ND 10<br>ND 20 | ND 20<br>ND 20<br>ND 40 | ND 20<br>ND 20<br>ND 40 |
| Carbon Distinite  Carbon Tetrachloride  Chlorobenzene                                | μg/L<br>μg/L                     | ND 12<br>ND 7                    | ND 30<br>ND 18               | ND 1<br>ND 1                     | ND 250<br>ND 250            | ND 500<br>ND 500              | ND 60<br>ND 35                | ND 2.4 H<br>ND 1.4 H             | ND 0.24<br>ND 0.14            | ND 12 *+<br>ND 7           | ND 5<br>ND 5                  | ND 5<br>ND 5            | ND 10<br>ND 10          | ND 10<br>ND 10          |
| Chloroethane<br>Chloroform                                                           | μg/L<br>μg/L                     | ND 24<br>ND 12                   | ND 60<br>ND 30               | ND 2<br>ND 2                     | ND 500<br>ND 500            | ND 1000<br>ND 1000            | ND 120<br>ND 60               | ND 4.8 H<br>ND 2.4 H             | ND 0.48<br>ND 0.24            | ND 24<br>ND 12             | ND 10<br>ND 10                | ND 10<br>ND 10          | ND 20<br>ND 20          | ND 20<br>ND 20          |
| Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropona                         | μg/L<br>μg/L                     | ND 26<br>5900                    | ND 65<br>12000<br>ND 38      | ND 2<br>5700<br>ND 1             | ND 500<br>22000<br>ND 250   | ND 1000<br>22000<br>ND 500    | ND 130<br>21000<br>ND 75      | ND 5.2 H<br>650 H                | ND 0.52<br>44<br>ND 0.3       | ND 26<br>1200<br>ND 15     | ND 10<br>580<br>ND 5          | ND 10<br>620            | ND 20<br>480            | ND 20<br>550<br>ND 10   |
| cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane                          | μg/L<br>μg/L<br>μg/L             | ND 15<br>ND 16<br>ND 17          | ND 38<br>ND 40<br>ND 43      | ND 1<br>ND 1<br>ND 1             | ND 250<br>ND 250<br>ND 250  | ND 500<br>ND 500<br>ND 500    | ND 75<br>ND 80<br>ND 85       | ND 3 H<br>ND 3.2 H<br>ND 3.4 H   | ND 0.3<br>ND 0.32<br>ND 0.34  | ND 15<br>ND 16<br>ND 17    | ND 5<br>ND 5<br>ND 5          | ND 5<br>ND 5<br>ND 5    | ND 10<br>ND 10<br>ND 10 | ND 10<br>ND 10<br>ND 10 |
| Dichlorodifluoromethane (CFC 12) Ethylbenzene                                        | μg/L<br>μg/L                     | ND 32<br>ND 8.4                  | ND 80<br>ND 21               | 300<br>ND 1                      | ND 500<br>ND 250            | ND 1000<br>ND 500             | 430 J<br>ND 42                | 100 H<br>ND 1.7 H                | 3.2<br>0.25 J                 | 69 J<br>ND 8.4             | ND 10<br>ND 5                 | ND 10<br>ND 5           | ND 20<br>ND 10          | ND 20<br>ND 10          |
| Hexachlorobutadiene<br>Isopropylbenzene                                              | μg/L<br>μg/L                     | ND 23<br>ND 11                   | ND 58<br>ND 28               | ND 2 ,*                          | ND 500<br>ND 250            | ND 1000<br>ND 500             | ND 120<br>ND 55               | ND 4.6 H<br>ND 2.2 H             | ND 0.46<br>ND 0.22            | ND 23 *+<br>ND 11          | ND 10<br>ND 5                 | ND 10<br>ND 5           | ND 20<br>ND 10          | ND 20<br>ND 10          |
| Methyl Isobutyl Ketone Methylene Chloride MTBE                                       | μg/L<br>μg/L                     | ND 11<br>ND 16<br>ND 12          | ND 28<br>ND 40<br>ND 30      | ND 4<br>ND 2<br>ND 1             | ND 1000<br>ND 500<br>ND 250 | ND 2000<br>ND 1000<br>ND 500  | ND 55<br>ND 80<br>ND 60       | ND 2.2 H<br>ND 3.2 H<br>ND 2.4 H | ND 0.22<br>ND 0.32<br>ND 0.24 | ND 11<br>ND 16<br>ND 12    | ND 20<br>ND 10<br>ND 5        | ND 20<br>ND 10<br>ND 5  | ND 40<br>ND 20<br>ND 10 | ND 40<br>ND 20<br>ND 10 |
| Naphthalene<br>n-Butylbenzene                                                        | μg/L<br>μg/L<br>μg/L             | ND 48<br>ND 18                   | ND 120<br>ND 45              | ND 2<br>ND 2                     | ND 500<br>ND 500            | ND 1000<br>ND 1000            | ND 240<br>ND 90               | ND 9.6 H<br>ND 3.6 H             | ND 0.96<br>ND 0.36            | ND 48<br>ND 18             | ND 10                         | ND 10                   | ND 20<br>ND 20          | ND 20<br>ND 20          |
| n-Propylbenzene<br>sec-Butylbenzene                                                  | μg/L<br>μg/L                     | ND 11<br>ND 14                   | ND 28<br>ND 35               | ND 2<br>ND 2                     | ND 500<br>ND 500            | ND 1000<br>ND 1000            | ND 55<br>ND 70                | ND 2.2 H<br>ND 2.8 H             | ND 0.22<br>ND 0.28            | ND 11<br>ND 14             | ND 10<br>ND 10                | ND 10<br>ND 10          | ND 20<br>ND 20          | ND 20<br>ND 20          |
| Styrene<br>tert-Butylbenzene                                                         | μg/L<br>μg/L                     | ND 13                            | ND 33                        | ND 1<br>ND 2                     | ND 250<br>ND 500            | ND 500<br>ND 1000             | ND 65                         | ND 2.6 H<br>ND 2.6 H             | ND 0.26<br>ND 0.26            | ND 13                      | ND 5<br>ND 10                 | ND 5<br>ND 10           | ND 10<br>ND 20          | ND 10<br>ND 20          |
| Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene                             | μg/L<br>μg/L<br>μg/L             | 38 J<br>ND 9.5<br>18 I           | 43 J<br>ND 24<br>ND 28       | 17<br>1.5<br>27                  | ND 250<br>ND 250<br>ND 250  | ND 500<br>ND 500<br>ND 500    | ND 50<br>ND 48<br>ND 55       | ND 2 H<br>ND 1.9 H<br>16 H       | 0.3 J<br>0.51 J<br>12         | ND 10<br>ND 9.5<br>ND 11   | ND 5<br>ND 5<br>5.3           | ND 5<br>ND 5<br>6.6     | ND 10<br>ND 10<br>ND 10 | ND 10<br>ND 10<br>ND 10 |
| trans=1,3-Dichloropropene Trichloroethene (TCE)                                      | μg/L<br>μg/L                     | ND 16<br>5000                    | ND 40<br>4100                | ND 1<br>8100 E                   | ND 250<br>2600              | ND 500<br>ND 500              | ND 80<br>ND 50                | ND 3.2 H                         | ND 0.32                       | ND 16<br>ND 10             | ND 5                          | ND 5                    | ND 10<br>ND 10          | ND 10<br>ND 10          |
| Trichlorofluoromethane (CFC 11) Vinyl Acetate                                        | μg/L<br>μg/L                     | ND 13<br>ND 19                   | ND 33<br>ND 48               | ND 2<br>ND 4                     | ND 500<br>ND 1000           | ND 1000<br>ND 2000            | ND 65<br>ND 95                | ND 2.6 H<br>ND 3.8 H             | ND 0.26<br>ND 0.38            | ND 13<br>ND 19             | ND 10<br>ND 20                | ND 10<br>ND 20          | ND 20<br>ND 40          | ND 20<br>ND 40          |
| Vinyl Chloride<br>Xylenes, Total                                                     | μg/L<br>μg/L                     | 49 J<br>ND 27                    | 75 J<br>ND 68                | 1.4                              | ND 250<br>ND 250            | ND 500<br>ND 500              | 310<br>ND 140                 | 4100 H<br>ND 5.4 H               | 130<br>0.58 J                 | 5100<br>ND 27              | 5.3<br>ND 5                   | 37<br>ND 5              | 50<br>ND 10             | 57<br>ND 10             |
| Total Organic Carbon                                                                 | mg/L                             | 1.2                              | 0.86 J                       | 2.4                              | 15310C - 101/<br>120        | 130                           | 130                           | 150                              | 210                           | 130                        | 1.8                           | 410                     | 510                     |                         |
| Sulfide                                                                              | mg/L                             | 0.21                             | 0.17                         | ND 0.1                           | 0.26                        | 0.059                         | 0.21                          | ND 0.022                         | 0.089                         | 0.38                       | ND 0.1                        | ND 0.05                 | ND 0.05 H,F1,F2         |                         |
| Bicarbonate Alkalinity Carbonate Hydroxide                                           | mg/L<br>mg/L                     | 400<br>ND 5                      | 360<br>ND 5                  | 410<br>ND 5                      | 710<br>ND 5                 | 810<br>ND 5                   | 940<br>ND 5                   | 1300<br>ND 5                     | 1200<br>ND 5                  | 1200<br>ND 5               | 430<br>ND 5                   | 1100<br>ND 5            | 1200<br>ND 5            |                         |
| Hydroxide Alkalinity Total Alkalinity                                                | mg/L<br>mg/L                     | ND 5                             | ND 5                         | ND 5                             | ND 5                        | ND 5<br>810                   | ND 5<br>940                   | ND 5                             | ND 5                          | ND 5                       | ND 5                          | ND 5                    | ND 5                    |                         |
| Nitrate                                                                              | mg/L                             | ND 0.5                           | ND 0.5                       | ND 1.3                           | PA 300.0 - NO<br>ND 1.3     | RATE AND SUL<br>ND 1.3        | FATE<br>ND 0.024              | ND 0.5                           | ND 0.5                        | ND 0.5                     | ND 1.3                        | ND 1.3                  | ND 1.3                  |                         |
| Sulfate                                                                              | mg/L                             | 110                              | 110                          | 180                              | 40<br>1 <b>200.7 - ARSE</b> | 34<br>NIC AND MANE            | 2.3<br>ANESE                  | 3.5 J                            | ND 1.8                        | 1.9]                       | 180                           | 6.8                     | ND 5                    |                         |
| Arsenic<br>Manganese                                                                 | μg/L<br>μg/L                     | ND 4.4<br>560                    | ND 19 H<br>850 H             |                                  |                             | 26<br>4600                    | 26<br>5700                    | 9.2 J<br>11000                   | 11 J<br>14000 B               | ND 19 H<br>6100 H          |                               |                         | 38<br>4900              |                         |
| Hydrogen                                                                             | nM                               | 0.86 J                           | 1.4 J                        | 53                               | <b>AMZOGAX</b><br>64        | - HYDROGEN                    | 9.6                           | 14                               | 5.0                           | 5.2                        | 2.0                           | 0.83 J                  | 2.1 J                   |                         |
| 4-Methylpentanoic Acid                                                               | mg/L                             | ND 0.056                         | ND 0.56                      | ND 0.056                         | AM23C - VOLA                | ND 0.056                      | <i>IDS</i><br>ND 0.56         | ND 0.56                          | ND 0.56                       | ND 0.56                    | ND 0.56                       |                         | ND 0.56                 |                         |
| Acetic Acid<br>Butyric Acid                                                          | mg/L<br>mg/L                     | 0.79<br>ND 0.058                 | 2.2 J<br>ND 0.58             | 0.74<br>ND 0.058                 | 210<br>9.1                  | 250<br>9                      | 230<br>6.8                    | 350<br>16                        | 570<br>28                     | 210<br>ND 0.58             | 3.6 J<br>0.88 J               | 350<br>5.6              | 680<br>23               |                         |
| Formic Acid i-Hexanoic Acid                                                          | mg/L<br>mg/L                     | 4.3<br>ND 0.058                  | 48<br>0.67 J                 | 4.7<br>0.075 J                   | 2.1 J<br>ND 0.28            | 1.1                           | 49<br>ND 0.58                 | 56<br>2.1 J                      | 47<br>0.9 J                   | 46<br>ND 0.58              | 53<br>ND 0.58                 | 5.4<br>ND 0.56          | 5.6<br>0.96 J           |                         |
| Isopentanoic Acid Lactic Acid Pentanoic Acid                                         | mg/L<br>mg/L<br>mg/L             | ND 0.061<br>ND 0.053<br>ND 0.056 | ND 0.61<br>0.75 J<br>ND 0.56 | ND 0.061<br>ND 0.053<br>ND 0.056 | 0.36 J<br>ND 0.26<br>1.4 J  | 0.45 J<br>ND 0.053<br>0.23 J  | ND 0.61<br>ND 0.53<br>ND 0.56 | 0.65 J<br>ND 0.53<br>ND 0.56     | 0.9 J<br>ND 0.53<br>ND 0.56   | ND 0.61<br>31<br>ND 0.56   | ND 0.61<br>ND 0.53<br>ND 0.56 | 1.3 J<br>ND 0.53<br>6.8 | 2.9 J<br>1.8 J<br>11    |                         |
| Propionic Acid Pyruvic Acid                                                          | mg/L<br>mg/L                     | ND 0.053<br>ND 0.06              | ND 0.53<br>ND 0.6            | 0.11 J<br>ND 0.06                | 13<br>0.54 J                | 3.9 J<br>0.61                 | 6.8<br>ND 0.6                 | 6.1<br>ND 0.6                    | 12<br>ND 0.6                  | ND 0.53<br>ND 0.6          | 0.61 J<br>ND 0.6              | 340<br>2.6 J            | 200                     |                         |
| Carbon Dioxide                                                                       | mg/L                             | 20.9                             | 28.8                         | 24.8                             | <b>RSK175 - D</b>           | SSOLVED GASE                  | 136                           | 211                              | 338                           | 399                        | 25.8                          | 284                     | 347                     |                         |
| Ethane<br>Ethene                                                                     | mg/L<br>mg/L                     | 0.0062<br>0.12                   | 0.0094<br>0.18               | 0.003<br>0.0013                  | 0.0058<br>0.027             | 0.0067<br>0.031               | 0.0065<br>0.27                | ND 0.00017<br>3.4                | 0.0065                        | 0.018<br>5.2               | 0.00033 J<br>0.0024           | 0.00069 J<br>0.0058     | 0.0028<br>0.033         |                         |
| Methane                                                                              | mg/L                             | 0.25                             | 0.42                         | 0.015                            | 0.015<br>QuantArray-C       | 0.036<br><b>hior - MICKOB</b> | 0.46<br>(AL                   | 3.3                              | 6.1                           | 3.7                        | 0.2                           | 0.19                    | 3.4                     |                         |
| APS<br>BVC                                                                           | Cells/mL<br>Cells/mL             | 537000<br><0.5                   | 221000<br><0.5               | 386<br>< 0.5                     |                             |                               | 1770000<br><0.5               |                                  | 149000<br><0.5                | 401000<br><0.5             | 17700<br>< 0.5                |                         |                         |                         |
| CER<br>CFR                                                                           | Cells/mL<br>Cells/mL             | <4.6<br><4.6                     | <4.9<br><4.9                 | < 4.6<br>< 4.6                   |                             |                               | <4.7<br>27.5                  |                                  | 10.3<br><4.6                  | 63.7<br><4.7               | < 4.6<br>< 4.6                |                         |                         |                         |
| DCA<br>DCAR<br>DCM                                                                   | Cells/mL<br>Cells/mL<br>Cells/mL | <4.6<br><4.6<br>90.6             | <4.9<br><4.9<br><4.9         | < 4.6<br>< 4.6<br>< 4.6          |                             |                               | 4.6 J<br><4.7<br>7220         |                                  | <4.6<br><4.6<br>633           | <4.7<br><4.7<br><4.7       | < 4.6<br>< 4.6<br>< 4.6       |                         |                         |                         |
| DCMA<br>DECO                                                                         | Cells/mL<br>Cells/mL             | <4.6<br>24700                    | <4.9<br>20200                | < 4.6<br>182                     |                             |                               | <4.7<br>44500                 |                                  | <4.6<br>5120                  | <4.7<br>12000              | < 4.6<br>425                  |                         |                         |                         |
| DHBt<br>DHC                                                                          | Cells/mL<br>Cells/mL             | 19200<br>73500                   | 10100<br>15800               | 1180                             |                             |                               | 427000<br>20000               |                                  | 44900<br>572000               | 146000<br>510000           | 2630<br>1.4                   |                         |                         |                         |
| DSB<br>DSM                                                                           | Cells/mL<br>Cells/mL             | <4.6<br>3750<br>156000           | <4.9<br>10700<br>44400       | < 4.6<br>1580<br>29.9            |                             |                               | <4.7<br>307000<br>203000      |                                  | 16.4<br>52500<br>7370         | 3080<br>60500<br><4.7      | < 4.6<br>3230                 |                         |                         |                         |
| EBAC<br>EtnC                                                                         | Cells/mL<br>Cells/mL<br>Cells/mL | 156000<br>12000000<br>36.7       | 3260000<br>45.9              | 29.9<br>171000<br>< 4.6          |                             |                               | 203000<br>49200000<br><4.7    |                                  | 7370<br>4690000<br>25.7       | <4.7<br>3720000<br>24.5    | < 4.6<br>1320000<br>< 4.6     |                         |                         |                         |
| EtnE<br>MGN                                                                          | Cells/mL<br>Cells/mL             | 55.6<br>237                      | <4.9<br>97.1                 | < 4.6<br>< 4.6                   | ==                          |                               | 134<br>2990                   |                                  | 278<br>111000                 | 946<br>76500               | < 4.6<br>< 4.6                |                         |                         |                         |
| PCE-1<br>PCE-2                                                                       | Cells/mL<br>Cells/mL             | <4.6<br>67400                    | <4.9<br>68900                | < 4.6<br>< 4.6                   |                             |                               | 9270<br>1990                  |                                  | 104<br>740                    | <4.7<br>4010               | < 4.6<br>< 4.6                |                         |                         |                         |
| PHE<br>RDEG                                                                          | Cells/mL<br>Cells/mL             | 9590<br>                         | 3070<br>11800                | 445<br>< 4.6                     |                             |                               | 23200<br>27400                |                                  | 1730<br>3740                  | 5990<br>15400              | 465<br>206                    |                         |                         |                         |
| RMO<br>SMMO<br>TCBO                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL | <4.6<br>4090<br><4.6             | <4.9<br>418<br><4.9          | < 4.6<br>< 4.6<br>< 4.6          |                             |                               | 105000<br>318<br><4.7         |                                  | 1400<br><4.6<br><4.6          | 16800<br><4.7<br><4.7      | < 4.6<br>< 4.6<br>< 4.6       |                         |                         |                         |
| TCE                                                                                  | Cells/mL                         | 11900                            | 4490<br><4.9                 | < 4.6<br>< 0.5<br>< 4.6          |                             |                               | 3160<br><4.7                  |                                  | 108000                        | 245000                     | < 4.6<br>< 0.5<br>< 4.6       |                         |                         |                         |
| TDR                                                                                  | Cells/mL                         | 14.0                             |                              |                                  |                             |                               |                               |                                  |                               |                            |                               |                         |                         |                         |



| Location ID<br>Sample Date                                                                         |                                  | S159A<br>2/15/21              | S159A<br>5/17/21               | \$159A<br>8/17/21              | S159A<br>11/8/21                 | S160A<br>9/15/20                | S160A<br>12/16/20            | S160A                          | S160A<br>2/16/21              | S160A<br>5/18/21                 | \$160A<br>5/18/21                 | \$160A<br>5/18/21          | S160A<br>5/18/21                  | S160A<br>8/18/21              |
|----------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------------------|---------------------------------|------------------------------|--------------------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------|-----------------------------------|-------------------------------|
| Sample Purpose                                                                                     |                                  | REG                           | REG                            | REG                            | REG                              | REG                             | REG                          | REG                            | REG                           | REG                              | REG                               | FD                         | FD                                | REG                           |
| Analysis Type Parameter                                                                            | Result Unit                      | INIT<br>Result                | INIT<br>Result                 | INIT<br>Result                 | INIT<br>Result                   | INIT<br>Result                  | INIT<br>Result               | INIT<br>Result                 | INIT<br>Result                | INIT<br>Result                   | REANL<br>Result                   | INIT<br>Result             | REANL<br>Result                   | INIT<br>Result                |
| 1,1,1,2-Tetrachloroethane                                                                          | μg/L                             | ND 0.4                        | ND 0.1                         | ND 0.1                         | 608 - VOLATIL<br>ND 0.1          | ND 25                           | ND 10                        | ND 25                          | ND 2                          | ND 2                             | ND 1 H                            | ND 2                       | ND 1 H                            | ND 2                          |
| 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane                        | µg/L<br>µg/L<br>µg/L             | ND 0.44<br>ND 0.44<br>ND 0.48 | ND 0.17<br>ND 0.1<br>ND 0.11   | ND 0.17<br>ND 0.1<br>ND 0.11   | ND 0.17<br>ND 0.1<br>ND 0.11     | ND 25<br>ND 25<br>ND 25         | ND 10<br>ND 10<br>ND 10      | ND 25<br>ND 25<br>ND 25        | ND 2<br>ND 2.2<br>ND 2.4      | 4.9 J<br>ND 2<br>ND 2.2          | 4.5 J,H<br>1.3 J,H<br>ND 1.1 H    | 3.7 J<br>ND 2<br>ND 2.2    | 3.8 J,H<br>1.1 J,H<br>ND 1.1 H    | ND 3.4<br>ND 2<br>ND 2.2      |
| 1,1,2-Trichlorotrifluoroethane (CFC 113) 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE) | μg/L<br>μg/L<br>μg/L             | ND 0.68<br>3.7<br>ND 0.52     | ND 0.12<br>ND 0.1<br>ND 0.13   | ND 0.12<br>ND 0.1<br>ND 0.13   | ND 0.12<br>ND 0.1<br>ND 0.13     | ND 25<br>120<br>ND 25           | ND 10<br>11<br>ND 10         | ND 25<br>ND 25<br>ND 25        | 4.3 J<br>6.3 J<br>ND 2.6      | ND 2.4<br>6.9 J<br>ND 2.6        | ND 1.2 H<br>6.4 H<br>2.3 J,H      | ND 2.4<br>5.6 J<br>ND 2.6  | ND 1.2 H<br>5.8 H<br>2 J,H        | ND 2.4<br>4.7 J<br>ND 2.6     |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane                                  | µg/L<br>µg/L<br>µg/L             | ND 0.48<br>ND 1.6<br>ND 0.52  | ND 0.12<br>ND 0.4<br>ND 0.13   | ND 0.12<br>ND 0.4<br>ND 0.13   | ND 0.12<br>ND 0.4<br>ND 0.13     | ND 25<br>ND 50<br>ND 50         | ND 10<br>ND 20<br>ND 20      | ND 25<br>ND 50<br>ND 50        | ND 2.4<br>ND 8<br>ND 2.6      | ND 2.4<br>ND 8<br>ND 2.6         | ND 1.2 H<br>ND 4 H<br>ND 1.3 H    | ND 2.4<br>ND 8<br>ND 2.6   | ND 1.2 H<br>ND 4 H<br>ND 1.3 H    | ND 2.4<br>ND 8<br>ND 2.6      |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP)                   | µg/L<br>µg/L<br>µg/L             | ND 1<br>ND 1.3<br>ND 0.8      | ND 0.25<br>ND 0.32<br>ND 0.2   | ND 0.25<br>ND 0.32<br>ND 0.2   | ND 0.25 *+<br>ND 0.32<br>ND 0.2  | ND 50<br>ND 50<br>ND 50         | ND 20<br>ND 20<br>ND 20      | ND 50<br>ND 50<br>ND 50        | ND 5<br>ND 6.4<br>ND 4        | ND 5<br>ND 6.4<br>ND 4           | ND 2.5 H<br>ND 3.2 H<br>ND 2 H    | ND 5<br>ND 6.4<br>ND 4     | ND 2.5 H<br>ND 3.2 H<br>ND 2 H    | ND 5<br>ND 6.4<br>ND 4        |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,2-Dichloroethane                                     | µg/L<br>µg/L<br>µg/L             | ND 0.48<br>ND 0.39<br>ND 0.56 | ND 0.12<br>0.3 J<br>ND 0.14    | ND 0.12<br>0.15 J<br>ND 0.14   | ND 0.12<br>0.16 J<br>ND 0.14     | ND 25<br>ND 25<br>ND 25         | ND 10<br>ND 10<br>ND 10      | ND 25<br>ND 25<br>ND 25        | ND 2.4<br>ND 1.9<br>ND 2.8    | ND 2.4<br>ND 1.9<br>ND 2.8       | ND 1.2 H<br>ND 0.97 H<br>ND 1.4 H | ND 2.4<br>ND 1.9<br>ND 2.8 | ND 1.2 H<br>ND 0.97 H<br>ND 1.4 H | ND 2.4<br>ND 1.9<br>ND 2.8    |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                                     | µg/L<br>µg/L<br>µg/L             | ND 0.6<br>ND 0.64<br>ND 0.34  | ND 0.15<br>ND 0.16<br>ND 0.086 | ND 0.15<br>ND 0.16<br>ND 0.086 | ND 0.15<br>ND 0.16<br>ND 0.086   | ND 25<br>ND 25<br>ND 25         | ND 10<br>ND 10<br>ND 10      | ND 25<br>ND 25<br>ND 25        | ND 3<br>ND 3.2<br>ND 1.7      | ND 3<br>ND 3.2<br>ND 1.7         | ND 1.5 H<br>ND 1.6 H<br>ND 0.86 H | ND 3<br>ND 3.2<br>ND 1.7   | ND 1.5 H<br>ND 1.6 H<br>ND 0.86 H | ND 3<br>ND 3.2<br>ND 1.7      |
| 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane                                        | µg/L<br>µg/L<br>µg/L             | ND 0.4<br>ND 0.33<br>ND 1.8   | ND 0.1<br>ND 0.083<br>ND 0.46  | ND 0.1<br>ND 0.083<br>ND 0.46  | ND 0.1<br>ND 0.083<br>ND 0.46    | ND 50<br>ND 25<br>ND 50         | ND 20<br>ND 10<br>ND 20      | ND 50<br>ND 25<br>ND 50        | ND 2<br>ND 1.7<br>ND 9.2      | ND 2<br>ND 1.7<br>ND 9.2         | ND 1 H<br>ND 0.83 H<br>ND 4.6 H   | ND 2<br>ND 1.7<br>ND 9.2   | ND 1 H<br>ND 0.83 H<br>ND 4.6 H   | ND 2<br>ND 1.7<br>ND 9.2      |
| 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone                                                        | μg/L<br>μg/L<br>μg/L             | 31<br>ND 0.44<br>ND 0.68      | 20<br>ND 0.11<br>0.48 J        | 9.7<br>ND 0.11<br>0.46 J       | 1.4 J<br>ND 0.11<br>0.47 J       | ND 100<br>ND 25<br>ND 100       | ND 40<br>ND 10<br>ND 40      | ND 100<br>ND 25<br>ND 100      | ND 6.6<br>ND 2.2<br>ND 3.4    | ND 6.6<br>ND 2.2<br>ND 3.4       | ND 3.3 H<br>ND 1.1 H<br>ND 1.7 H  | ND 6.6<br>ND 2.2<br>ND 3.4 | ND 3.3 H<br>ND 1.1 H<br>ND 1.7 H  | ND 6.6<br>ND 2.2<br>ND 3.4    |
| 4-Chlorotoluene 4-Isopropyltoluene Acetone                                                         | µg/L<br>µg/L<br>µg/L             | ND 0.4<br>ND 0.6<br>18 J      | ND 0.1<br>ND 0.15<br>18        | ND 0.1<br>ND 0.15              | ND 0.1<br>ND 0.15<br>ND 3.8      | ND 25<br>ND 50<br>ND 500        | ND 10<br>ND 20<br>ND 200     | ND 25<br>ND 50<br>ND 500       | ND 2<br>ND 3<br>ND 76         | ND 2<br>ND 3<br>ND 76            | ND 1 H<br>ND 1.5 H<br>ND 38 H     | ND 2<br>ND 3<br>ND 76      | ND 1 H<br>ND 1.5 H<br>ND 38 H     | ND 2<br>ND 3<br>ND 76         |
| Bromobenzene Bromochloromethane                                                                    | μg/L<br>μg/L<br>μg/L             | ND 0.32<br>ND 0.36<br>ND 0.72 | ND 0.08<br>ND 0.091<br>ND 0.18 | ND 0.08<br>ND 0.091<br>ND 0.18 | ND 0.08<br>ND 0.091<br>ND 0.18   | ND 25<br>ND 50<br>ND 50         | ND 10<br>ND 20<br>ND 20      | ND 25<br>ND 50<br>ND 50        | ND 1.6<br>ND 1.8<br>ND 3.6    | ND 1.6<br>ND 1.8<br>ND 3.6       | ND 0.8 H<br>ND 0.91 H<br>ND 1.8 H | ND 1.6<br>ND 1.8<br>ND 3.6 | ND 0.8 H<br>ND 0.91 H<br>ND 1.8 H | ND 1.6<br>ND 1.8<br>ND 3.6    |
| Bromodichloromethane Bromoform Bromomethane                                                        | µg/L<br>µg/L<br>µg/L             | ND 0.56<br>ND 0.76<br>ND 0.84 | ND 0.14<br>ND 0.19<br>ND 0.21  | ND 0.14<br>ND 0.19<br>ND 0.21  | ND 0.14<br>ND 0.19<br>ND 0.21    | ND 25<br>ND 50<br>ND 50         | ND 10<br>ND 20<br>ND 20      | ND 25<br>ND 50<br>ND 50        | ND 2.8<br>ND 3.8 *+<br>ND 4.2 | ND 2.8<br>ND 3.8<br>ND 4.2       | ND 1.4 H<br>ND 1.9 H<br>ND 2.1 H  | ND 2.8<br>ND 3.8<br>ND 4.2 | ND 1.4 H<br>ND 1.9 H<br>ND 2.1 H  | ND 2.8<br>ND 3.8<br>ND 4.2    |
| Carbon Disulfide<br>Carbon Tetrachloride<br>Chlorobenzene                                          | µg/L<br>µg/L<br>µg/L             | ND 1.4<br>ND 0.48<br>ND 0.28  | 0.66 J<br>ND 0.12<br>ND 0.07   | 0.57 J<br>ND 0.12<br>ND 0.07   | ND 0.36<br>ND 0.12<br>ND 0.07    | ND 100<br>ND 25<br>ND 25        | ND 40<br>ND 10<br>ND 10      | ND 100<br>ND 25<br>ND 25       | ND 7.2<br>ND 2.4<br>ND 1.4    | ND 7.2<br>ND 2.4<br>ND 1.4       | ND 3.6 H<br>ND 1.2 H<br>ND 0.7 H  | ND 7.2<br>ND 2.4<br>ND 1.4 | ND 3.6 H<br>ND 1.2 H<br>ND 0.7 H  | ND 7.2<br>ND 2.4<br>ND 1.4    |
| Chloroethane Chloroform Chloromethane                                                              | μg/L<br>μg/L<br>μg/L             | 2.7 J<br>ND 0.48<br>ND 1      | 4.9<br>ND 0.12<br>ND 0.26      | 3.5<br>ND 0.12<br>ND 0.26      | 3.6<br>ND 0.12<br>ND 0.26        | ND 50<br>ND 50<br>ND 50         | ND 20<br>ND 20<br>ND 20      | ND 50<br>ND 50<br>ND 50        | ND 4.8<br>ND 2.4<br>ND 5.2    | 16 J<br>ND 2.4<br>ND 5.2         | 16 H<br>ND 1.2 H<br>ND 2.6 H      | 16 J<br>ND 2.4<br>ND 5.2   | 13 H<br>ND 1.2 H<br>ND 2.6 H      | 20<br>ND 2.4<br>ND 5.2        |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane                          | µg/L<br>µg/L<br>µg/L             | 210<br>ND 0.6<br>ND 0.64      | 2.3<br>ND 0.15<br>ND 0.16      | 1.1<br>ND 0.15<br>ND 0.16      | 1.5<br>ND 0.15<br>ND 0.16        | 1600<br>ND 25<br>ND 25          | 1300<br>ND 10<br>ND 10       | 1400<br>ND 25<br>ND 25         | 1100<br>ND 3<br>ND 3.2        | 1200<br>ND 3<br>ND 3.2           | <br>ND 1.5 H<br>ND 1.6 H          | 1100<br>ND 3<br>ND 3.2     | <br>ND 1.5 H<br>ND 1.6 H          | 680<br>ND 3<br>ND 3.2         |
| Dibromomethane Dichlorodifluoromethane (CFC 12) Ethylbenzene                                       | μg/L<br>μg/L<br>μg/L             | ND 0.68<br>ND 1.3<br>ND 0.34  | ND 0.17<br>ND 0.32<br>ND 0.084 | ND 0.17<br>ND 0.32<br>ND 0.084 | ND 0.17<br>ND 0.32<br>ND 0.084   | ND 25<br>ND 50<br>ND 25         | ND 10<br>ND 20<br>ND 10      | ND 25<br>ND 50<br>ND 25        | ND 3.4<br>ND 6.4<br>ND 1.7    | ND 3.4<br>ND 6.4<br>ND 1.7       | ND 1.7 H<br>ND 3.2 H<br>ND 0.84 H | ND 3.4<br>ND 6.4<br>ND 1.7 | ND 1.7 H<br>ND 3.2 H<br>ND 0.84 H | ND 3.4<br>ND 6.4<br>ND 1.7    |
| Hexachlorobutadiene<br>Isopropylbenzene<br>Methyl Isobutyl Ketone                                  | µg/L<br>µg/L<br>µg/L             | ND 0.92<br>ND 0.44<br>ND 0.44 | ND 0.23<br>ND 0.11<br>0.26 J   | ND 0.23<br>ND 0.11<br>0.21 J   | ND 0.23 *+<br>ND 0.11<br>0.11 J  | ND 50<br>ND 25<br>ND 100        | ND 20<br>ND 10<br>ND 40      | ND 50<br>ND 25<br>ND 100       | ND 4.6 *+<br>ND 2.2<br>ND 2.2 | ND 4.6<br>ND 2.2<br>ND 2.2       | ND 2.3 H<br>ND 1.1 H<br>ND 1.1 H  | ND 4.6<br>ND 2.2<br>ND 2.2 | ND 2.3 H<br>ND 1.1 H<br>ND 1.1 H  | ND 4.6<br>ND 2.2<br>ND 2.2    |
| Methylene Chloride<br>MTBE<br>Naphthalene                                                          | μg/L<br>μg/L<br>μg/L             | ND 0.64<br>ND 0.48<br>ND 1.9  | ND 0.16<br>ND 0.12<br>ND 0.48  | ND 0.16<br>ND 0.12<br>ND 0.48  | ND 0.16<br>ND 0.12<br>ND 0.48    | ND 50<br>ND 25<br>ND 50         | ND 20<br>ND 10<br>ND 20      | ND 50<br>ND 25<br>ND 50        | ND 3.2<br>ND 2.4<br>ND 9.6    | ND 3.2<br>ND 2.4<br>ND 9.6       | 3.5 J,H,B<br>ND 1.2 H<br>ND 4.8 H | ND 3.2<br>ND 2.4<br>ND 9.6 | 3.1 J,H,B<br>ND 1.2 H<br>ND 4.8 H | ND 3.2<br>ND 2.4<br>ND 9.6    |
| n-Butylbenzene<br>n-Propylbenzene<br>sec-Butylbenzene                                              | μg/L<br>μg/L<br>μg/L             | ND 0.72<br>ND 0.44<br>ND 0.56 | ND 0.18<br>ND 0.11<br>ND 0.14  | ND 0.18<br>ND 0.11<br>ND 0.14  | ND 0.18<br>ND 0.11<br>ND 0.14    | ND 50<br>ND 50<br>ND 50         | ND 20<br>ND 20<br>ND 20      | ND 50<br>ND 50<br>ND 50        | ND 3.6<br>ND 2.2<br>ND 2.8    | ND 3.6<br>ND 2.2<br>ND 2.8       | ND 1.8 H<br>ND 1.1 H<br>ND 1.4 H  | ND 3.6<br>ND 2.2<br>ND 2.8 | ND 1.8 H<br>ND 1.1 H<br>ND 1.4 H  | ND 3.6<br>ND 2.2<br>ND 2.8    |
| Styrene tert-Butylbenzene Tetrachloroethene (PCE)                                                  | μg/L<br>μg/L<br>μg/L             | ND 0.52<br>ND 0.52<br>ND 0.4  | ND 0.13<br>ND 0.13<br>ND 0.1   | ND 0.13<br>ND 0.13<br>ND 0.1   | ND 0.13<br>ND 0.13<br>ND 0.1     | ND 25<br>ND 50<br>ND 25         | ND 10<br>ND 20<br>ND 10      | ND 25<br>ND 50<br>ND 25        | ND 2.6<br>ND 2.6<br>ND 2      | ND 2.6<br>ND 2.6<br>ND 2         | ND 1.3 H<br>ND 1.3 H<br>ND 1 H    | ND 2.6<br>ND 2.6<br>ND 2   | ND 1.3 H<br>ND 1.3 H<br>ND 1 H    | ND 2.6<br>ND 2.6<br>ND 2      |
| trans-1,2-Dichloropthene trans-1,3-Dichloropthene                                                  | μg/L<br>μg/L                     | ND 0.38<br>7.3<br>ND 0.64     | ND 0.095<br>6<br>ND 0.16       | ND 0.095<br>4<br>ND 0.16       | ND 0.095<br>3<br>ND 0.16         | ND 25<br>ND 25<br>ND 25         | ND 10<br>ND 10<br>ND 10      | ND 25<br>ND 25<br>ND 25        | ND 1.9<br>2.8 J<br>ND 3.2     | ND 1.9<br>8.4 J<br>ND 3.2        | ND 0.95 H<br>8.2 H<br>ND 1.6 H    | ND 1.9<br>6.9 J<br>ND 3.2  | ND 0.95 H<br>7.3 H<br>ND 1.6 H    | ND 1.9<br>6.4 J<br>ND 3.2     |
| Trichloroethene (TCE) Trichlorofluoromethane (CFC 11)                                              | μg/L<br>μg/L<br>μg/L             | 1.6 J<br>ND 0.52              | 0.52<br>ND 0.13                | 0.37 J<br>ND 0.13              | 0.33 J<br>ND 0.13                | 500<br>ND 50                    | ND 10<br>ND 20               | ND 25<br>ND 50                 | 16<br>ND 2.6                  | 21<br>ND 2.6                     | 20 H<br>ND 1.3 H                  | 19<br>ND 2.6               | 18 H<br>ND 1.3 H                  | 59<br>ND 2.6                  |
| Vinyl Acetate<br>Vinyl Chloride<br>Xylenes, Total                                                  | μg/L<br>μg/L<br>μg/L             | ND 0.76<br>41<br>ND 1.1       | ND 0.19<br>0.82<br>ND 0.27     | ND 0.19<br>0.62<br>ND 0.27     | ND 0.19 *+<br>ND 0.18<br>ND 0.27 | ND 100<br>300<br>ND 25          | ND 40<br>77<br>ND 10         | ND 100<br>78<br>ND 25          | ND 3.8<br>69<br>ND 5.4        | ND 3.8<br>97<br>ND 5.4           | ND 1.9 H<br>93 H<br>ND 2.7 H      | ND 3.8<br>83<br>ND 5.4     | ND 1.9 H<br>76 H<br>ND 2.7 H      | ND 3.8<br>71<br>ND 5.4        |
| Total Organic Carbon                                                                               | mg/L                             | 460                           | 83                             | <b>54</b>                      | 19<br>19<br>SM 4500S             | ND 1  O SULFIDE                 | 6.7                          | 4.2                            | 4.4                           | 4.4                              |                                   | 4.4                        |                                   | 3.2                           |
| Sulfide                                                                                            | mg/L                             | 0.23                          | 0.056                          | ND 0.022                       | ND 0.022                         | ND 0.1                          | 0.17                         | ND 0.05 H                      | 0.22                          | ND 0.022                         |                                   | ND 0.022                   |                                   | 0.15                          |
| Bicarbonate Alkalinity Carbonate Hydroxide Hydroxide Alkalinity                                    | mg/L<br>mg/L<br>mg/L             | 1300<br>ND 5<br>ND 5          | 1500<br>ND 5<br>ND 5           | 1700<br>ND 5<br>ND 5           | 1400<br>ND 5<br>ND 5             | 690<br>ND 5<br>ND 5             | 730<br>ND 5<br>ND 5          | 790<br>ND 5<br>ND 5            | 890<br>ND 5<br>ND 5           | 1000<br>ND 5<br>ND 5             |                                   | 1000<br>ND 5<br>ND 5       |                                   | 1000<br>ND 5<br>ND 5          |
| Total Alkalinity                                                                                   | mg/L                             | 1300                          | 1500                           | 1700<br>£                      | 1400<br><b>PA 300.0 - NIT</b>    | 690<br>RATE AND SUL             | 730<br>FATE                  | 790                            | 890                           | 1000                             |                                   | 1000                       |                                   | 1000                          |
| Nitrate<br>Sulfate                                                                                 | mg/L<br>mg/L                     | ND 0.5                        | ND 0.5<br>ND 1.8               | ND 0.5<br>ND 1.8               | ND 0.5<br>ND 1.8<br>200.7 ~ ARSE | ND 1.3<br>110<br>VIC AND MANO   | ND 1.3<br>130<br>ANESE       | ND 1.3<br>160                  | ND 0.88<br>160                | ND 0.5<br>130                    |                                   | ND 0.5<br>130              |                                   | ND 0.5<br>96                  |
| Arsenic<br>Manganese                                                                               | µg/L<br>µg/L                     | 25<br>5100                    | 21<br>4000                     | 21<br>3600                     | 21 J,H<br>4000 H                 |                                 |                              | ND 15<br>1100                  | 16<br>1100                    | ND 4.4<br>990                    |                                   | 5.1 J<br>1100              |                                   | ND 4.4<br>1100 B              |
| Hydrogen                                                                                           | nM                               | 3.6                           | 4.6                            | 3.0                            | 1.9 J<br><b>AM23G - VOLA</b>     | HYDROGEN 4.6 THE FATTY AC       | 3.0<br>7 <b>DS</b>           | 1.9 J                          | 4.6                           | 3.0                              | 1.9 J                             | 4.6                        | 3.0                               | 1.9 J                         |
| 4-Methylpentanoic Acid<br>Acetic Acid<br>Butyric Acid                                              | mg/L<br>mg/L<br>mg/L             | ND 0.56<br>500<br>44          | ND 0.11<br>32<br>ND 0.12       | ND 0.56<br>48<br>ND 0.58       | ND 0.56<br>14<br>ND 0.58         | ND 0.56<br>3.4 J<br>ND 0.58     | <br>6.8<br>ND 0.29           | ND 0.056<br>1.8<br>ND 0.058    | ND 0.56<br>5.7<br>ND 0.58     | ND 0.056<br>0.21 J<br>ND 0.058   |                                   |                            |                                   | ND 0.56<br>3.8 J<br>ND 0.58   |
| Formic Acid<br>i-Hexanoic Acid<br>Isopentanoic Acid                                                | mg/L<br>mg/L<br>mg/L             | 56<br>5.2<br>4.3 J            | 11<br>ND 0.12<br>ND 0.12       | 42<br>ND 0.58<br>ND 0.61       | 46<br>ND 0.58<br>ND 0.61         | 50<br>ND 0.58<br>ND 0.61        | 2 J<br>ND 0.28<br>ND 0.3     | 0.29 J<br>ND 0.058<br>ND 0.061 | 47<br>ND 0.58<br>ND 0.61      | 5.4<br>ND 0.058<br>ND 0.061      |                                   |                            |                                   | 45<br>ND 0.58<br>ND 0.61      |
| Lactic Acid Pentanoic Acid Propionic Acid                                                          | mg/L<br>mg/L<br>mg/L             | 1.3 J<br>12<br>180            | ND 0.11<br>ND 0.11<br>25       | ND 0.53<br>ND 0.56<br>2.8 J    | 4.9 J<br>ND 0.56<br>ND 0.53      | ND 0.53<br>ND 0.56<br>ND 0.53   | 0.78 J<br>ND 0.28<br>ND 0.26 | ND 0.053<br>ND 0.056<br>0.13 [ | ND 0.53<br>ND 0.56<br>ND 0.53 | ND 0.053<br>ND 0.056<br>ND 0.053 |                                   |                            |                                   | ND 0.53<br>ND 0.56<br>ND 0.53 |
| Pyruvic Acid                                                                                       | mg/L                             | 10                            | ND 0.12                        | ND 0.6                         |                                  | ND 0.6                          |                              | ND 0.06                        | ND 0.6                        | ND 0.06                          |                                   |                            |                                   | ND 0.6                        |
| Carbon Dioxide<br>Ethane<br>Ethene                                                                 | mg/L<br>mg/L<br>mg/L             | 285<br>0.0024<br>0.1          | 191<br>ND 0.00017<br>0.019     | 265<br>ND 0.00017<br>0.012     | 0.00033 J<br>0.0039              | 71.4<br>0.0067<br>0.85          | 75.9<br>0.00082 J<br>0.025   | 0.0016<br>0.043                | 0.0018<br>0.072               | 178<br>ND 0.00017<br>0.064       |                                   |                            |                                   | 0.0036<br>0.04                |
| Methane  APS                                                                                       | mg/L Cells/mL                    | 191000                        | 7.4                            | 6.5<br>14600                   | 2.9<br>QuantArray - C<br>6670    | 4<br>hior - MICROBI<br>292000   | 1<br> AL<br>                 | 2.6                            | 133000                        | 4.2                              |                                   |                            |                                   | 56600                         |
| BVC<br>CER<br>CFR                                                                                  | Cells/mL<br>Cells/mL<br>Cells/mL | <0.5<br><4.7<br><4.7          |                                | <0.9<br><9.2<br><9.2           | <0.5<br>20.5<br><5               | < 0.5<br>5.2<br>< 4.6           |                              |                                | <0.5<br>271<br><4.7           |                                  |                                   |                            |                                   | <0.5<br>993<br><4.5           |
| DCA<br>DCAR<br>DCM                                                                                 | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br><4.7<br>1800          |                                | <9.2<br><9.2<br><9.2           | <5<br><5<br><5                   | < 4.6<br>< 4.6<br>< 4.6         |                              |                                | <4.7<br><4.7<br><4.7          |                                  |                                   |                            |                                   | <4.5<br><4.5<br><4.5          |
| DCMA DECO DHB:                                                                                     | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br>17200<br>26100        |                                | <9.2<br><9.2<br>7580<br>2400   | <5<br>5550<br>16800              | < 4.6<br>< 4.6<br>5600<br>27100 |                              |                                | <4.7<br><4.7<br>3580<br>20700 |                                  |                                   |                            |                                   | <4.5<br><4.5<br>1520<br>8780  |
| DHC<br>DHG                                                                                         | Cells/mL<br>Cells/mL             | 109000<br><4.7                |                                | 1860<br>1450                   | 2000<br>540                      | 26.8<br>2340                    |                              |                                | 10400<br>7720                 |                                  |                                   |                            |                                   | 5980<br>30400                 |
| DSB DSM EBAC                                                                                       | Cells/mL Cells/mL Cells/mL       | 13400<br>4.8<br>35200000      |                                | 5520<br><9.2<br>6650000        | 9.8<br>2530000                   | 15400<br>6750<br>10100000       |                              |                                | 19500<br>451<br>5600000       |                                  |                                   |                            |                                   | 17300<br><4.5<br>3030000      |
| EtnC<br>EtnE<br>MGN                                                                                | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br><4.7<br>204000        |                                | <9.2<br><9.2<br>222000         | <5<br><5<br>172000               | < 4.6<br>< 4.6<br>2.4 J         |                              |                                | <4.7<br>116<br>454            |                                  |                                   |                            |                                   | <4.5<br>68.6<br>2920          |
| PCE-1<br>PCE-2<br>PHE                                                                              | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br>39.8<br>44.7          |                                | <9.2<br><9.2<br>310            | <5<br><5<br>60.9                 | < 4.6<br>< 4.6<br>634           |                              |                                | <4.7<br>2140<br>6320          |                                  |                                   |                            |                                   | <4.5<br>1730<br>11.1          |
| RDEG<br>RMO<br>SMMO                                                                                | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br><4.7<br>524           |                                | <9.2<br>5.6 J<br><9.2          | 331<br><5<br><5                  | 447<br>< 4.6<br>< 4.6           | <br>                         |                                | 11600<br>27600<br>191         | <br><br>                         |                                   |                            |                                   | 41.3<br><4.5<br><4.5          |
| TCBO TCE TDR                                                                                       | Cells/mL<br>Cells/mL<br>Cells/mL | <4.7<br>22600<br><4.7         |                                | <9.2<br>228<br><9.2            | <5<br>406<br><5                  | < 4.6<br>4.4<br>< 4.6           |                              |                                | <4.7<br>1270<br><4.7          |                                  |                                   |                            |                                   | <4.5<br>785<br><4.5           |
| TOD VCR                                                                                            | Cells/mL<br>Cells/mL             | <4.7<br><4.7<br>13600         |                                | <9.2<br><9.2<br>182            | 333<br>353                       | < 4.6<br>< 4.6<br>4.4           |                              |                                | <4.7<br><4.7<br>711           |                                  |                                   |                            |                                   | <4.5<br><4.5<br>428           |



| Location ID Sample Date                                                           |                                  | S160A<br>11/9/21                 | TW-1                     | TW-2<br>11/20/20      | TW-3                  | Blank<br>9/15/20           | Blank<br>12/17/20             | Blank<br>1/19/21           | Blank 2/17/21                  | Blank<br>5/18/21               | Blank<br>8/19/21               | Blank<br>11/9/21                    | Trip Blank<br>9/14/20       | Trip Blank<br>9/15/20      |
|-----------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------|-----------------------|-----------------------|----------------------------|-------------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------------|-----------------------------|----------------------------|
| Sample Purpose                                                                    |                                  | REG                              | REG                      | REG                   | REG                   | FB                         | FB                            | FB                         | FB                             | FB                             | FB<br>INIT                     | FB<br>INIT                          | TB                          | TB                         |
| Analysis Type Parameter                                                           | Result Unit                      | INIT<br>Result                   | INIT<br>Result           | INIT<br>Result        | INIT<br>Result        | INIT<br>Result             | INIT<br>Result                | INIT<br>Result             | INIT<br>Result                 | INIT<br>Result                 | Result                         | Result                              | INIT<br>Result              | Result                     |
| 1,1,1,2-Tetrachloroethane                                                         | µg/L                             | 3.8 J                            | ND 10                    | ND 2                  | 608 - VOLATIL<br>ND 1 | ND 0.5                     | ND 0.50                       | ND 0.5                     | ND 0.1                         | ND 0.1                         | ND 0.1                         | ND 0.1 *+                           | ND 0.5                      | ND 0.5                     |
| 1,1,2-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane       | μg/L<br>μg/L<br>μg/L             | ND 2<br>ND 2.2<br>ND 2.4         | ND 10<br>ND 10<br>ND 10  | ND 2<br>ND 2<br>ND 2  | ND 1<br>ND 1<br>ND 1  | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.50<br>ND 0.50<br>ND 0.50 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.11<br>ND 0.11<br>ND 0.12  | ND 0.17<br>ND 0.1<br>ND 0.11   | ND 0.17<br>ND 0.1<br>ND 0.11   | ND 0.17<br>ND 0.1<br>ND 0.11        | ND 0.5<br>ND 0.5<br>ND 0.5  | ND 0.5<br>ND 0.5<br>ND 0.5 |
| 1,1,2-Trichlorotrifluoroethane (CFC 113)<br>1,1-Dichloroethane (1,1-DCA)          | μg/L<br>μg/L                     | 4.2 J<br>ND 2.6                  | 12<br>ND 10              | 5.9<br>ND 2           | 3.5<br>ND 1           | ND 0.5<br>ND 0.5           | ND 0.50<br>ND 0.50            | ND 0.5<br>ND 0.5           | ND 0.17<br>ND 0.1              | ND 0.12<br>ND 0.1              | ND 0.12<br>ND 0.1              | ND 0.12<br>ND 0.1                   | ND 0.5<br>ND 0.5            | ND 0.5<br>ND 0.5           |
| 1,1-Dichloroethene (1,1-DCE) 1,1-Dichloropropene 1,2,3-Trichlorobenzene           | μg/L<br>μg/L<br>μg/L             | ND 2.4<br>ND 8<br>ND 2.6         | ND 10<br>ND 10<br>ND 20  | ND 2<br>ND 2<br>ND 4  | ND 1<br>ND 1<br>ND 2  | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.50<br>ND 0.50<br>ND 1.0  | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.13<br>ND 0.12<br>ND 0.4        | ND 0.5<br>ND 0.5<br>ND 1    | ND 0.5<br>ND 0.5<br>ND 1   |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene                                  | μg/L<br>μg/L                     | ND 5<br>ND 6.4                   | ND 20<br>ND 20           | ND 4<br>ND 4          | ND 2<br>ND 2          | ND 1<br>ND 1               | ND 1.0<br>ND 1.0              | ND 1<br>ND 1               | ND 0.13<br>ND 0.25             | ND 0.13<br>ND 0.25             | ND 0.13<br>ND 0.25             | ND 0.13<br>ND 0.25                  | ND 1<br>ND 1                | ND 1<br>ND 1               |
| 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) | μg/L<br>μg/L<br>μg/L             | ND 4<br>ND 2.4<br>ND 1.9         | ND 20<br>ND 20<br>ND 10  | ND 4<br>ND 4<br>ND 2  | ND 2<br>ND 2<br>ND 1  | ND 1<br>ND 1<br>ND 0.5     | ND 1.0<br>ND 1.0<br>ND 0.50   | ND 1<br>ND 1<br>ND 0.5     | ND 0.32<br>ND 0.2<br>ND 0.12        | ND 1<br>ND 1<br>ND 0.5      | ND 1<br>ND 1<br>ND 0.5     |
| 1,2-Dichlorobenzene 1,2-Dichloroethane                                            | μg/L<br>μg/L                     | ND 2.8<br>ND 3<br>ND 3.2         | ND 10<br>ND 10<br>ND 10  | ND 2<br>ND 2<br>ND 2  | ND 1<br>ND 1<br>ND 1  | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.50<br>ND 0.50<br>ND 0.50 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.097<br>ND 0.14<br>ND 0.15      | ND 0.5<br>ND 0.5<br>ND 0.5  | ND 0.5<br>ND 0.5<br>ND 0.5 |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                    | µg/L<br>µg/L<br>µg/L             | ND 1.7<br>ND 2                   | ND 10<br>ND 10           | ND 2<br>ND 2          | ND 1<br>ND 1          | ND 0.5<br>ND 1             | ND 0.50<br>ND 1.0             | ND 0.5<br>ND 0.5           | ND 0.16<br>ND 0.086            | ND 0.16<br>ND 0.086            | ND 0.16<br>ND 0.086            | ND 0.16<br>ND 0.086                 | ND 0.5<br>ND 1              | ND 0.5<br>ND 1             |
| 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane                       | µg/L<br>µg/L<br>µg/L             | ND 1.7<br>ND 9.2<br>ND 6.6       | ND 20<br>ND 10<br>ND 20  | ND 4<br>ND 2<br>ND 4  | ND 2<br>ND 1<br>ND 2  | ND 0.5<br>ND 1<br>ND 2     | ND 0.50<br>ND 1.0<br>ND 2.0   | ND 1<br>ND 0.5<br>ND 1     | ND 0.1<br>ND 0.083<br>ND 0.46       | ND 0.5<br>ND 1<br>ND 2      | ND 0.5<br>ND 1<br>ND 2     |
| 2-Butanone (MEK)<br>2-Chlorotoluene                                               | μg/L<br>μg/L                     | ND 2.2<br>ND 3.4                 | 40<br>ND 10              | 30<br>ND 2            | ND 4<br>ND 1          | ND 0.5<br>ND 2             | ND 0.50<br>ND 2.0             | ND 2<br>ND 0.5             | ND 0.33<br>ND 0.11             | ND 0.33<br>ND 0.11             | ND 0.33<br>ND 0.11             | ND 0.33<br>ND 0.11                  | ND 0.5<br>ND 2              | ND 0.5<br>ND 2             |
| 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene                                     | µg/L<br>µg/L<br>µg/L             | ND 2<br>ND 3<br>ND 76            | ND 40<br>ND 10<br>ND 20  | ND 8<br>ND 2<br>ND 4  | ND 4<br>ND 1<br>ND 2  | ND 0.5<br>ND 1<br>ND 2     | ND 0.50<br>ND 1.0<br>ND 2.0   | ND 2<br>ND 0.5<br>ND 1     | ND 0.17<br>ND 0.1<br>ND 0.15        | ND 0.5<br>ND 1<br>ND 2      | ND 0.5<br>ND 1<br>ND 2     |
| Acetone<br>Benzene                                                                | μg/L<br>μg/L                     | ND 1.6<br>ND 1.8<br>ND 3.6       | ND 200<br>ND 10<br>ND 20 | ND 40<br>ND 2<br>ND 4 | ND 20<br>ND 1<br>ND 2 | ND 10<br>ND 0.5<br>ND 1    | ND 10<br>ND 0.50<br>ND 1.0    | ND 10<br>ND 0.5<br>ND 1    | ND 3.8<br>ND 0.08<br>ND 0.091  | ND 3.8<br>ND 0.08<br>ND 0.091  | 4.3 J<br>ND 0.08<br>ND 0.091   | ND 3.8<br>ND 0.08<br>ND 0.091       | ND 10<br>ND 0.5<br>ND 1     | ND 10<br>ND 0.5<br>ND 1    |
| Bromobenzene Bromochloromethane Bromodichloromethane                              | µg/L<br>µg/L<br>µg/L             | ND 3.6<br>ND 2.4 *+<br>ND 2.8    | ND 20<br>ND 20<br>ND 10  | ND 4<br>ND 4<br>ND 2  | ND 2<br>ND 1          | ND 1<br>ND 1               | ND 1.0<br>ND 1.0<br>ND 1.0    | ND 1<br>ND 0.5             | ND 0.18<br>ND 0.14             | ND 0.091<br>ND 0.18<br>ND 0.14 | ND 0.091<br>ND 0.18<br>ND 0.14 | ND 0.091<br>ND 0.18<br>ND 0.14      | ND 1<br>ND 1                | ND 1<br>ND 1               |
| Bromoform Bromomethane Carbon Disulfide                                           | μg/L<br>μg/L<br>μg/L             | ND 4.2<br>ND 7.2<br>ND 1.4       | ND 20<br>ND 20<br>ND 40  | ND 4<br>ND 4<br>ND 8  | ND 2<br>ND 2<br>ND 4  | ND 2<br>ND 0.5<br>ND 0.5   | ND 2.0<br>ND 0.50<br>ND 0.50  | ND 1<br>ND 1<br>ND 2       | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19 *+<br>ND 0.21<br>B 0.93 J,B | ND 2<br>ND 0.5<br>ND 0.5    | ND 2<br>ND 0.5<br>ND 0.5   |
| Carbon Tetrachloride<br>Chlorobenzene                                             | μg/L<br>μg/L                     | 25<br>ND 2.4                     | ND 10<br>ND 10           | ND 2<br>ND 2          | ND 1<br>ND 1          | ND 1<br>ND 0.5             | ND 1.0<br>ND 0.50             | ND 0.5<br>ND 0.5           | ND 0.12<br>ND 0.07             | ND 0.12<br>ND 0.07             | ND 0.12<br>ND 0.07             | ND 0.12 *+<br>ND 0.07               | ND 1<br>ND 0.5              | ND 1<br>ND 0.5             |
| Chloroethane Chloroform Chloromethane                                             | µg/L<br>µg/L<br>µg/L             | ND 5.2<br>840<br>ND 3            | ND 20<br>ND 20<br>ND 20  | ND 4<br>ND 4<br>ND 4  | ND 2<br>ND 2<br>ND 2  | ND 1<br>ND 1<br>ND 1       | ND 1.0<br>ND 1.0<br>ND 1.0    | ND 1<br>ND 1<br>ND 1       | ND 0.24<br>ND 0.12<br>ND 0.26       | ND 1<br>ND 1<br>ND 1        | ND 1<br>ND 1<br>ND 1       |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                                 | μg/L<br>μg/L                     | ND 3.2<br>ND 3.4                 | 94<br>ND 10              | 100<br>ND 2           | 76<br>ND 1            | ND 0.5<br>ND 0.5           | ND 0.50<br>ND 0.50            | ND 0.5<br>ND 0.5           | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15                  | ND 0.5<br>ND 0.5            | ND 0.5<br>ND 0.5           |
| Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC 12)              | µg/L<br>µg/L<br>µg/L             | ND 6.4<br>ND 1.7<br>ND 2.2       | ND 10<br>ND 10<br>ND 20  | ND 2<br>ND 2<br>ND 4  | ND 1<br>ND 1<br>ND 2  | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.50<br>ND 0.50<br>ND 1.0  | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.16<br>ND 0.17<br>ND 0.32       | ND 0.5<br>ND 0.5<br>ND 1    | ND 0.5<br>ND 0.5<br>ND 1   |
| Ethylbenzene<br>Hexachlorobutadiene                                               | μg/L<br>μg/L                     | ND 2 *+<br>ND 2.2                | ND 10<br>ND 20           | ND 2<br>ND 4          | ND 1<br>ND 2          | ND 0.5<br>ND 0.5           | ND 0.50<br>ND 0.50            | ND 0.5<br>ND 1             | ND 0.084<br>ND 0.23            | ND 0.084<br>ND 0.23            | ND 0.084<br>ND 0.23            | ND 0.084<br>ND 0.23 *+              | ND 0.5<br>ND 0.5            | ND 0.5<br>ND 0.5           |
| Isopropylbenzene Methyl Isobutyl Ketone Methylene Chloride                        | µg/L<br>µg/L<br>µg/L             | ND 3.8 *+<br>ND 4.6 *+<br>ND 3.2 | ND 10<br>ND 40<br>ND 20  | ND 2<br>ND 8<br>ND 4  | ND 1<br>ND 4<br>ND 2  | ND 1<br>ND 0.5<br>ND 0.5   | ND 1.0<br>ND 0.50<br>ND 0.50  | ND 0.5<br>ND 2<br>ND 1     | ND 0.11<br>ND 0.11<br>ND 0.16       | ND 1 ,*<br>ND 0.5<br>ND 0.5 | ND 1<br>ND 0.5<br>ND 0.5   |
| MTBE Naphthalene                                                                  | μg/L<br>μg/L                     | ND 2.4<br>ND 9.6<br>ND 3.6       | ND 10<br>ND 20<br>ND 20  | ND 2<br>ND 4<br>ND 4  | ND 1<br>ND 2<br>ND 2  | ND 1<br>ND 1<br>ND 1       | ND 1.0<br>ND 1.0<br>ND 1.0    | ND 0.5<br>ND 1<br>ND 1     | ND 0.12<br>ND 0.48<br>ND 0.18       | ND 1<br>ND 1<br>ND 1        | ND 1<br>ND 1<br>ND 1       |
| n-Butylbenzene<br>n-Propylbenzene<br>sec-Butylbenzene                             | µg/L<br>µg/L<br>µg/L             | ND 2.2<br>ND 2.8                 | ND 20<br>ND 20           | ND 4<br>ND 4          | ND 2<br>ND 2          | ND 1<br>ND 1               | ND 1.0<br>ND 1.0              | ND 1<br>ND 1               | ND 0.11<br>ND 0.14             | ND 0.11<br>ND 0.14             | ND 0.11<br>ND 0.14             | ND 0.11<br>ND 0.14                  | ND 1<br>ND 1                | ND 1                       |
| Styrene tert-Butylbenzene Tetrachloroethene (PCE)                                 | μg/L<br>μg/L<br>μg/L             | ND 2.6<br>ND 2.6<br>ND 2         | ND 10<br>ND 20<br>ND 10  | ND 2<br>ND 4<br>ND 2  | ND 1<br>ND 2<br>ND 1  | ND 0.5<br>ND 1<br>ND 0.5   | ND 0.50<br>ND 1.0<br>ND 0.50  | ND 0.5<br>ND 1<br>ND 0.5   | ND 0.13<br>ND 0.13<br>ND 0.1        | ND 0.5<br>ND 1<br>ND 0.5    | ND 0.5<br>ND 1<br>ND 0.5   |
| Toluene<br>trans-1,2-Dichloroethene                                               | μg/L<br>μg/L                     | ND 1.9<br>8.1 J                  | ND 10<br>ND 10           | ND 2<br>ND 2          | ND 1                  | ND 0.5<br>ND 0.5           | ND 0.50<br>ND 0.50            | ND 0.5<br>ND 0.5           | ND 0.095<br>ND 0.11            | ND 0.095<br>ND 0.11            | ND 0.095<br>ND 0.11            | ND 0.095<br>ND 0.11                 | ND 0.5<br>ND 0.5            | ND 0.5<br>ND 0.5           |
| trans-1,3-Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane (CFC 11)   | µg/L<br>µg/L<br>µg/L             | ND 3.2<br>160<br>ND 2.6          | ND 10<br>900<br>ND 20    | ND 2<br>170<br>ND 4   | ND 1<br>68<br>ND 2    | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.50<br>ND 0.50<br>ND 1.0  | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.16<br>ND 0.1<br>ND 0.13        | ND 0.5<br>ND 0.5<br>ND 1    | ND 0.5<br>ND 0.5<br>ND 1   |
| Vinyl Acetate Vinyl Chloride Xylenes, Total                                       | μg/L<br>μg/L                     | ND 3.8                           | ND 40 ,*1<br>ND 10       | ND 8 ,*1<br>2.4       | ND 4 ,*1<br>ND 1      | ND 2<br>ND 0.5             | ND 2.0<br>ND 0.50             | ND 2<br>ND 0.5             | ND 0.19<br>ND 0.18             | ND 0.19<br>ND 0.18             | ND 0.19<br>ND 0.18             | ND 0.19<br>ND 0.18                  | ND 2<br>ND 0.5              | ND 2<br>ND 0.5             |
| Total Organic Carbon                                                              | μg/L<br>mg/L                     | ND 5.4                           | ND 10                    | ND 2                  | ND 1<br>5310C - 1017  | ND 0.5<br>SL ORGANIC CA    | ND 0.50                       | ND 0.5                     | ND 0.27                        | ND 0.27                        | ND 0.27                        | ND 0.27                             | ND 0.5                      | ND 0.5                     |
| Sulfide                                                                           | mg/L                             | 0.36                             |                          |                       | SM 4500S.             | P-D - SULFIDE              |                               |                            |                                | ND 0.022                       | ND 0.022                       | ND 0.022                            |                             | <u> </u>                   |
| Bicarbonate Alkalinity                                                            | mg/L                             | 950                              |                          |                       | SM 23208              | ALKALINITY                 |                               |                            |                                | ND 5.0                         | ND 5.0                         | ND 5.0                              |                             | <u> </u>                   |
| Carbonate Hydroxide<br>Hydroxide Alkalinity<br>Total Alkalinity                   | mg/L<br>mg/L<br>mg/L             | ND 5<br>ND 5<br>950              |                          |                       |                       |                            |                               |                            |                                | ND 5.0<br>ND 5.0<br>ND 5.0     | ND 5.0<br>ND 5.0<br>ND 5.0     | ND 5.0<br>ND 5.0<br>ND 5.0          |                             |                            |
| Nitrate                                                                           | mg/L                             | ND 0.5                           |                          | <i>E</i>              | PA 300.0 - NIT        | RATE AND SUL               | FATE                          |                            |                                | ND 0.1                         | ND 0.1                         | ND 0.5                              |                             |                            |
| Sulfate                                                                           | mg/L                             | 95                               |                          | EPA                   | 200.7 - ARSE          | NIC AND MANO               | ANESE                         |                            |                                | ND 0.36                        | ND 0.36                        | ND 1.8                              |                             |                            |
| Arsenic<br>Manganese                                                              | μg/L<br>μg/L                     | ND 19 H<br>450 H,F1              |                          |                       | <br><br>44720FAY      |                            |                               |                            |                                | ND 4.4<br>8.9 J                | ND 4.4<br>2.0 J                | ND 19 H<br>ND 4.1 H                 |                             |                            |
| Hydrogen                                                                          | nM                               | 4.6                              |                          |                       | AM23G - VOL           |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| 4-Methylpentanoic Acid<br>Acetic Acid                                             | mg/L<br>mg/L                     | ND 0.56                          |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| Butyric Acid  Formic Acid  i-Hexanoic Acid                                        | mg/L<br>mg/L<br>mg/L             | ND 0.58<br>50<br>0.63 J          |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| Isopentanoic Acid<br>Lactic Acid                                                  | mg/L<br>mg/L                     | ND 0.61                          |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| Pentanoic Acid Propionic Acid Pyruvic Acid                                        | mg/L<br>mg/L<br>mg/L             | ND 0.56<br>ND 0.53<br>ND 0.6     | <br>                     |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| Carbon Dioxide                                                                    | mg/L                             | 271                              |                          |                       |                       | SSOLVED GASE               |                               |                            |                                |                                |                                |                                     |                             |                            |
| Ethane Ethene Methane                                                             | mg/L<br>mg/L<br>mg/L             | 0.00023 J<br>0.042<br>9.2        |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| APS                                                                               | Cells/mL                         | 43600                            |                          |                       | QuantArray-C          | hior - MICROB              | IAL                           |                            |                                |                                |                                |                                     |                             |                            |
| BVC<br>CER                                                                        | Cells/mL<br>Cells/mL             | <0.5<br>596                      |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| CFR DCA DCAR                                                                      | Cells/mL<br>Cells/mL<br>Cells/mL | <4.6<br><4.6<br><4.6             |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| DCM<br>DCMA<br>DECO                                                               | Cells/mL<br>Cells/mL<br>Cells/mL | <4.6<br><4.6<br>3440             |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| DHBt<br>DHC                                                                       | Cells/mL<br>Cells/mL             | 10400<br>4660                    |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| DHG DSB DSM                                                                       | Cells/mL<br>Cells/mL<br>Cells/mL | 36400<br>9180<br>46.3            | <br>                     |                       | <br>                  |                            | <br>                          |                            |                                | <br>                           |                                |                                     |                             |                            |
| EBAC<br>EtnC                                                                      | Cells/mL<br>Cells/mL             | 1340000<br><4.6                  |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| EtnE<br>MGN<br>PCE-1                                                              | Cells/mL<br>Cells/mL<br>Cells/mL | <4.6<br>1350<br><4.6             |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| PCE-2<br>PHE                                                                      | Cells/mL<br>Cells/mL             | 1110<br>32.1                     |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| RDEG<br>RMO<br>SMMO                                                               | Cells/mL<br>Cells/mL<br>Cells/mL | 132<br><4.6<br><4.6              | <br>                     |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| TCBO                                                                              | Cells/mL<br>Cells/mL             | <4.6<br>630                      |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |
| TCE TDR                                                                           | Cells/mL                         | <4.6                             |                          |                       |                       |                            |                               |                            |                                |                                |                                |                                     |                             |                            |



| Location ID Sample Date                                                                     |                                                                                                                                                                                                                         | Trip Blank<br>9/16/20      | Trip Blank<br>12/15/20     | Trip Blank<br>12/16/20     | Trip Blank<br>12/17/20         | Trip Blank<br>12/18/20     | Trip Blank                 | Trip Blank                 | Trip Blank                 | Trip Blank<br>2/15/21          | Trip Blank<br>2/16/21             | Trip Blank 2/17/21             | Trip Blank 5/17/21             | Trip Blank<br>5/18/21          |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Sample Purpose                                                                              |                                                                                                                                                                                                                         | TB                         | TB                         | TB                         | TB                             | TB                         | TB                         | TB                         | TB                         | TB                             | TB                                | TB                             | TB                             | TB                             |
| Analysis Type Parameter                                                                     | Result Unit                                                                                                                                                                                                             | INIT<br>Result             | INIT<br>Result             | INIT<br>Result             | INIT<br>Result                 | INIT<br>Result             | INIT<br>Result             | INIT<br>Result             | INIT<br>Result             | INIT<br>Result                 | INIT<br>Result                    | INIT<br>Result                 | INIT<br>Result                 | INIT<br>Result                 |
| 1,1,1,2-Tetrachloroethane                                                                   | µg/L                                                                                                                                                                                                                    | ND 0.5                     | ND 0.5                     | <i>EPA 82</i><br>ND 0.5    | <b>608 - VOLATIL</b><br>ND 0.5 | E ORGANIC CO<br>ND 0.5     | MPCUNOS<br>ND 0.5          | ND 0.5                     | ND 0.5                     | ND 0.1                         | ND 0.1                            | ND 0.1                         | ND 0.1                         | ND 0.1                         |
| 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane                 | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5<br>ND 0.5     | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.11<br>ND 0.11<br>ND 0.12  | ND 0.11<br>ND 0.11<br>ND 0.12     | ND 0.11<br>ND 0.11<br>ND 0.12  | ND 0.17<br>ND 0.1<br>ND 0.11   | ND 0.17<br>ND 0.1<br>ND 0.11   |
| 1,1,2=Trichloroethane 1,1,2=Trichlorotrifluoroethane (CFC 113) 1,1=Dichloroethane (1,1=DCA) | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5<br>ND 0.5     | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.12<br>ND 0.17<br>ND 0.1   | ND 0.12<br>ND 0.17<br>ND 0.1      | ND 0.12<br>ND 0.17<br>ND 0.1   | ND 0.11<br>ND 0.12<br>ND 0.1   | ND 0.11<br>ND 0.12<br>ND 0.1   |
| 1,1-Dichloroethene (1,1-DCE)<br>1,1-Dichloropropene                                         | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5               | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.13<br>ND 0.12             | ND 0.13<br>ND 0.12                | ND 0.13<br>ND 0.12             | ND 0.13<br>ND 0.12             | ND 0.13<br>ND 0.12             |
| 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene                        | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 1<br>ND 1<br>ND 1           | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 0.4<br>ND 0.13<br>ND 0.25   | ND 0.4<br>ND 0.13<br>ND 0.25      | ND 0.4<br>ND 0.13<br>ND 0.25   | ND 0.4<br>ND 0.13<br>ND 0.25   | ND 0.4<br>ND 0.13<br>ND 0.25   |
| 1,2,4-Trimethylbenzene 1,2-Dibromo-3chloropropane (DBCP)                                    | μg/L<br>μg/L                                                                                                                                                                                                            | ND 1                       | ND I                       | ND 1                       | ND 1<br>ND 1                   | ND 1<br>ND 1               | ND 1<br>ND 1               | ND 1<br>ND 1               | ND 1<br>ND 1 *+            | ND 0.32<br>ND 0.2              | ND 0.32<br>ND 0.2                 | ND 0.32<br>ND 0.2              | ND 0.32<br>ND 0.2              | ND 0.32<br>ND 0.2              |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene                                                 | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5<br>ND 0.5     | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.12<br>ND 0.097<br>ND 0.14 | ND 0.12<br>ND 0.097<br>ND 0.14    | ND 0.12<br>ND 0.097<br>ND 0.14 | ND 0.12<br>ND 0.097<br>ND 0.14 | ND 0.12<br>ND 0.097<br>ND 0.14 |
| 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene                               | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5               | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5<br>ND 0.5 | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.14<br>ND 0.15<br>ND 0.16  | ND 0.14<br>ND 0.15<br>ND 0.16     | ND 0.14<br>ND 0.15<br>ND 0.16  | ND 0.14<br>ND 0.15<br>ND 0.16  | ND 0.14<br>ND 0.15<br>ND 0.16  |
| 1,3-Dichlorobenzene<br>1,3-Dichloropropane                                                  | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 1             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5                 | ND 1<br>ND 0.5             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.086<br>ND 0.1             | ND 0.086<br>ND 0.1                | ND 0.086<br>ND 0.1             | ND 0.086<br>ND 0.1             | ND 0.086                       |
| 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK)                                    | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 1<br>ND 2     | ND 1<br>ND 2<br>ND 0.5     | ND 1<br>ND 2<br>ND 0.5     | ND 1<br>ND 2<br>ND 0.5         | ND 1<br>ND 2<br>ND 0.5     | ND 0.5<br>ND 1<br>ND 2     | ND 0.5<br>ND 1<br>ND 2     | ND 0.5<br>ND 1<br>ND 2     | ND 0.083<br>ND 0.46<br>ND 0.33 | ND 0.083<br>ND 0.46<br>ND 0.33    | ND 0.083<br>ND 0.46<br>ND 0.33 | ND 0.083<br>ND 0.46<br>ND 0.33 | ND 0.083<br>ND 0.46<br>0.36 J  |
| 2-Chlorotoluene<br>2-Hexanone                                                               | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 2             | ND 2<br>ND 0.5             | ND 2<br>ND 0.5             | ND 2<br>ND 0.5                 | ND 2<br>ND 0.5             | ND 0.5<br>ND 2             | ND 0.5<br>ND 2             | ND 0.5<br>ND 2             | ND 0.11<br>ND 0.17             | ND 0.11<br>ND 0.17                | ND 0.11<br>ND 0.17             | ND 0.11<br>ND 0.17             | ND 0.11<br>ND 0.17             |
| 4-Chlorotoluene 4-Isopropyltoluene Acetone                                                  | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 1<br>ND 10    | ND 1<br>ND 2<br>ND 10      | ND 1<br>ND 2<br>ND 10      | ND 1<br>ND 2<br>ND 10          | ND 1<br>ND 2<br>ND 10      | ND 0.5<br>ND 1<br>ND 10    | ND 0.5<br>ND 1<br>ND 10    | ND 0.5<br>ND 1<br>ND 10    | ND 0.1<br>ND 0.15<br>ND 3.8    | ND 0.1<br>ND 0.15<br>ND 3.8       | ND 0.1<br>ND 0.15<br>ND 3.8    | ND 0.1<br>ND 0.15<br>ND 3.8    | ND 0.15<br>ND 0.15<br>ND 3.8   |
| Benzene Bromobenzene                                                                        | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1                 | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.5<br>ND 1             | ND 0.08<br>ND 0.091            | ND 0.08<br>ND 0.091               | ND 0.08<br>ND 0.091            | ND 0.08<br>ND 0.091            | ND 0.08                        |
| Bromochloromethane Bromodichloromethane                                                     | μg/L<br>μg/L                                                                                                                                                                                                            | ND 1<br>ND 0.5             | ND I<br>ND I               | ND 1<br>ND 1               | ND 1<br>ND 1                   | ND 1<br>ND 1               | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 0.18<br>ND 0.14             | ND 0.18<br>ND 0.14                | ND 0.18<br>ND 0.14             | ND 0.18<br>ND 0.14             | ND 0.18<br>ND 0.14             |
| Bromoform Bromomethane Carbon Disulfide                                                     | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 1<br>ND 1<br>ND 2       | ND 2<br>ND 0.5<br>ND 0.5   | ND 2<br>ND 0.5<br>ND 0.5   | ND 2<br>ND 0.5<br>ND 0.5       | ND 2<br>ND 0.5<br>ND 0.5   | ND 1<br>ND 1<br>ND 2       | ND 1<br>ND 1<br>ND 2       | ND 1<br>ND 1<br>ND 2       | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19 *+<br>ND 0.21<br>ND 0.36  | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19<br>ND 0.21<br>ND 0.36  | ND 0.19<br>ND 0.21<br>ND 0.36  |
| Carbon Tetrachloride Chlorobenzene                                                          | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5           | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5                 | ND 1<br>ND 0.5             | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.12<br>ND 0.07             | ND 0.12<br>ND 0.07                | ND 0.12<br>ND 0.07             | ND 0.12<br>ND 0.07             | ND 0.12<br>ND 0.07             |
| Chloroethane Chloroform Chloromethane                                                       | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 1<br>ND 1<br>ND 1       | ND I<br>ND I<br>ND I       | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1           | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 1<br>ND 1<br>ND 1       | ND 0.24<br>ND 0.12<br>ND 0.26  | ND 0.24<br>ND 0.12<br>ND 0.26     | ND 0.24<br>ND 0.12<br>ND 0.26  | ND 0.24<br>ND 0.12<br>ND 0.26  | ND 0.24<br>ND 0.12<br>ND 0.26  |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                                           | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5               | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15                | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15             | ND 0.18<br>ND 0.15             |
| Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC 12)                        | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5<br>ND 1       | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.5<br>ND 0.5<br>ND 1   | ND 0.16<br>ND 0.17<br>ND 0.32  | ND 0.16<br>ND 0.17                | ND 0.16<br>ND 0.17             | ND 0.16<br>ND 0.17<br>ND 0.32  | ND 0.16<br>ND 0.17<br>ND 0.32  |
| Dichlorodifluoromethane (CFC 12)  Ethylbenzene  Hexachlorobutadiene                         | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 1             | ND 0.5<br>ND 0.5           | ND 1<br>ND 0.5<br>ND 0.5   | ND 1<br>ND 0.5<br>ND 0.5       | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 1             | ND 1<br>ND 0.5<br>ND 1     | ND 1<br>ND 0.5<br>ND 1     | ND 0.32<br>ND 0.084<br>ND 0.23 | ND 0.32<br>ND 0.084<br>ND 0.23 *+ | ND 0.32<br>ND 0.084<br>ND 0.23 | ND 0.32<br>ND 0.084<br>ND 0.23 | ND 0.32<br>ND 0.08<br>ND 0.23  |
| Isopropylbenzene<br>Methyl Isobutyl Ketone                                                  | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 2             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5                 | ND 1<br>ND 0.5             | ND 0.5<br>ND 2             | ND 0.5<br>ND 2             | ND 0.5<br>ND 2             | ND 0.11<br>ND 0.11             | ND 0.11<br>ND 0.11                | ND 0.11<br>ND 0.11             | ND 0.11<br>ND 0.11             | ND 0.11<br>ND 0.11             |
| Methylene Chloride MTBE Naphthalene                                                         | μg/L<br>μg/L                                                                                                                                                                                                            | ND 1<br>ND 0.5<br>ND 1     | ND 0.5<br>ND 1<br>ND 1     | ND 0.5<br>ND 1<br>ND 1     | ND 0.5<br>ND 1<br>ND 1         | ND 0.5<br>ND 1<br>ND 1     | ND 1<br>ND 0.5<br>ND 1     | ND 1<br>ND 0.5<br>ND 1     | ND 1<br>ND 0.5<br>ND 1     | ND 0.16<br>ND 0.12<br>ND 0.48  | ND 0.16<br>ND 0.12<br>ND 0.48     | ND 0.16<br>ND 0.12<br>ND 0.48  | ND 0.16<br>ND 0.12<br>ND 0.48  | ND 0.16<br>ND 0.12<br>ND 0.48  |
| n-Butylbenzene<br>n-Propylbenzene                                                           | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 1                       | ND 1<br>ND 1               | ND 1                       | ND 1<br>ND 1                   | ND 1                       | ND 1<br>ND 1               | ND 1<br>ND 1               | ND 1<br>ND 1               | ND 0.18<br>ND 0.11             | ND 0.18<br>ND 0.11                | ND 0.18<br>ND 0.11             | ND 0.18<br>ND 0.11             | ND 0.18                        |
| sec-Butylbenzene<br>Styrene                                                                 | μg/L<br>μg/L                                                                                                                                                                                                            | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5                 | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 1<br>ND 0.5             | ND 0.14<br>ND 0.13             | ND 0.14<br>ND 0.13                | ND 0.14<br>ND 0.13             | ND 0.14<br>ND 0.13             | ND 0.14<br>ND 0.13             |
| tert-Butylbenzene Tetrachloroethene (PCE) Toluene                                           | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 1<br>ND 0.5<br>ND 0.5       | ND 1<br>ND 0.5<br>ND 0.5   | ND 1<br>ND 0.5<br>ND 0.5   | ND 1<br>ND 0.5<br>ND 0.5   | ND 1<br>ND 0.5<br>ND 0.5   | ND 0.13<br>ND 0.1<br>ND 0.095  | ND 0.13<br>ND 0.1<br>ND 0.095     | ND 0.13<br>ND 0.1<br>ND 0.095  | ND 0.13<br>ND 0.1<br>ND 0.095  | ND 0.13<br>ND 0.1<br>ND 0.09   |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene                                       | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5               | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.11<br>ND 0.16             | ND 0.11<br>ND 0.16                | ND 0.11<br>ND 0.16             | ND 0.11<br>ND 0.16             | ND 0.11<br>ND 0.16             |
| Trichloroethene (TCE) Trichlorofluoromethane (CFC 11) Vinyl Acetate                         | μg/L<br>μg/L                                                                                                                                                                                                            | ND 0.5<br>ND 1<br>ND 2         | ND 0.5<br>ND 1<br>ND 2     | ND 0.5<br>ND 1<br>ND 2     | ND 0.5<br>ND 1<br>ND 2     | ND 0.5<br>ND 1<br>ND 2     | ND 0.1<br>ND 0.13<br>ND 0.19   | ND 0.1<br>ND 0.13<br>ND 0.19      | ND 0.13<br>ND 0.13             | ND 0.13<br>ND 0.13<br>ND 0.19  | ND 0.13<br>ND 0.13             |
| Vinyl Chloride  Xylenes, Total                                                              | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                    | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5               | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.5<br>ND 0.5           | ND 0.18<br>ND 0.27             | ND 0.18<br>ND 0.27                | ND 0.18<br>ND 0.27             | ND 0.18<br>ND 0.27             | ND 0.19<br>ND 0.18             |
| Total Organic Carbon                                                                        | mg/L                                                                                                                                                                                                                    |                            |                            | S&                         | 5310C - 101)<br>               | AL ORGANIC C               | ARBON                      |                            |                            |                                |                                   |                                |                                |                                |
| Sulfide                                                                                     | mg/L                                                                                                                                                                                                                    |                            |                            |                            | SM 4500S.                      | 2-D - SULFIDE              |                            |                            |                            |                                |                                   |                                |                                |                                |
| Bicarbonate Alkalinity                                                                      | mg/L                                                                                                                                                                                                                    |                            |                            |                            | SM 23208                       | - ALKALINITY               |                            |                            |                            |                                |                                   |                                |                                |                                |
| Carbonate Hydroxide<br>Hydroxide Alkalinity<br>Total Alkalinity                             | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| Nitrate                                                                                     | mg/L                                                                                                                                                                                                                    | T                          | I                          | E                          | PA 300.0 - NIT                 | RATE AND SUL               | FATE                       |                            | ]                          |                                | <br>                              | T                              |                                |                                |
| Sulfate                                                                                     | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            | 200.7 - ARSE                   | NIC AND MAN                | ANESE                      |                            |                            |                                |                                   |                                |                                |                                |
| Arsenic<br>Manganese                                                                        | μg/L<br>μg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| Hydrogen                                                                                    | nM                                                                                                                                                                                                                      |                            |                            |                            | AM20GAX                        | - HYDROGEN                 |                            |                            |                            |                                |                                   |                                |                                |                                |
| 4-Methylpentanoic Acid                                                                      | mg/L                                                                                                                                                                                                                    |                            |                            |                            | AM23G - VOLA                   | THE FATTY A                | 7DS                        |                            | T                          |                                |                                   |                                |                                | -<br>                          |
| Acetic Acid Butyric Acid Formic Acid                                                        | mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                    |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| i-Hexanoic Acid Isopentanoic Acid                                                           | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| Lactic Acid<br>Pentanoic Acid                                                               | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| Propionic Acid<br>Pyruvic Acid                                                              | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| Carbon Dioxide<br>Ethane                                                                    | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            | #S#173 - £#                    | SSOLVED CASE               |                            |                            |                            |                                |                                   |                                |                                |                                |
| Ethene<br>Methane                                                                           | mg/L<br>mg/L                                                                                                                                                                                                            |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| APS                                                                                         | Cells/mL                                                                                                                                                                                                                |                            |                            |                            | QuantArray-C                   | hior - MICROB              | IAL                        |                            | -                          |                                |                                   |                                |                                |                                |
| BVC<br>CER<br>CFR                                                                           | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                        |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DCA DCAR                                                                                    | Cells/mL<br>Cells/mL                                                                                                                                                                                                    |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DCM DCMA                                                                                    | Cells/mL<br>Cells/mL                                                                                                                                                                                                    |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DECO<br>DHBt                                                                                | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                        |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHC                                                                                         | Cons/IIIL                                                                                                                                                                                                               |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG<br>DSB                                                                                  | Cells/mL<br>Cells/mL                                                                                                                                                                                                    |                            |                            |                            |                                |                            |                            |                            |                            | . —                            |                                   |                                |                                |                                |
| DHG DS8 DSM EBAC                                                                            | Cells/mL<br>Cells/mL<br>Cells/mL                                                                                                                                                                                        |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG DSB DSM EBAC EInC EtnE                                                                  | Cells/mL<br>Cells/mL                                                                                                                                                                                                    |                            |                            |                            |                                | <u> </u>                   |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG DSB DSM EBAC EINC EINE MGN PCE-1 PCE-2                                                  | Cells/mL                                                                                                                               |                            |                            |                            | <br>                           |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG DSB  DSM EBAC EINC EINE MGN PCE-1 PCE-2 PHE RDEG                                        | Cells/mL                                                                                                    |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG DSB  DSM EBAC EINC EINE MGN PCE-1 PCE-2 PHE RDEG RMO                                    | Cells/mL                                                                                                             |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| DHG DSB DSM EBAC EINC EINE MGN PCE-1 PCE-2 PHE RDEG RMO SMMO TCBO TCBO TCE TDR              | Cells/mL |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |
| TCE                                                                                         | Cells/mL          |                            |                            |                            |                                |                            |                            |                            |                            |                                |                                   |                                |                                |                                |



| Location ID Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trip Blank<br>5/19/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trip Blank<br>8/17/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trip Blank<br>8/18/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trip Blank<br>8/19/21          | Trip Blank                        | Trip Blank                        | Trip Blank<br>11/10/21         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| Sample Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TB                             | TB                                | TB                                | TB                             |
| Analysis Type<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INIT<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INIT<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INIT<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INIT<br>Result                 | INIT<br>Result                    | INIT<br>Result                    | INIT<br>Result                 |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>ΕΡΑ 62</i><br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 608 - VOLATIL<br>ND 0.1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E ORGANIC CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MPCUNDS<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.1                         | ND 0.1                            | ND 0.1 *+                         | ND 0.1                         |
| 1,1,1-Trichloroethane (TCA)<br>1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.17 H<br>ND 0.1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.17<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.17<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.17<br>ND 0.1              | ND 0.17<br>ND 0.1                 | ND 0.17<br>ND 0.1                 | ND 0.17<br>ND 0.1              |
| 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane (CFC 113) 1,1-Dichloroethane (1,1-DCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.11 H<br>ND 0.12 H<br>ND 0.1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.12<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.11<br>ND 0.12<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.11<br>ND 0.12<br>ND 0.1   | ND 0.11<br>ND 0.12<br>ND 0.1      | ND 0.11<br>ND 0.12<br>ND 0.1      | ND 0.11<br>ND 0.12<br>ND 0.1   |
| 1,1-Dichloroethene (1,1-DCE)<br>1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.13 H<br>ND 0.12 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.13<br>ND 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.13<br>ND 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.13<br>ND 0.12             | ND 0.13<br>ND 0.12                | ND 0.13<br>ND 0.12                | ND 0.13<br>ND 0.12             |
| 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.4 H<br>ND 0.13 H<br>ND 0.25 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.4<br>ND 0.13<br>ND 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.4<br>ND 0.13<br>ND 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.4<br>ND 0.13<br>ND 0.25   | ND 0.4<br>ND 0.13<br>ND 0.25 *+   | ND 0.4<br>ND 0.13<br>ND 0.25      | ND 0.4<br>ND 0.13<br>ND 0.25   |
| 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.32 H<br>ND 0.2 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.32<br>ND 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.32<br>ND 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.32<br>ND 0.2              | ND 0.32<br>ND 0.2                 | ND 0.32<br>ND 0.2                 | ND 0.32<br>ND 0.2              |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12 H<br>ND 0.097 H<br>ND 0.14 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12<br>ND 0.097<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.12<br>ND 0.097<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.12<br>ND 0.097<br>ND 0.14 | ND 0.12<br>ND 0.097<br>ND 0.14    | ND 0.12<br>ND 0.097<br>ND 0.14    | ND 0.12<br>ND 0.097<br>ND 0.14 |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.14 H<br>ND 0.15 H<br>ND 0.16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.14<br>ND 0.15<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.14<br>ND 0.15<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.14<br>ND 0.15<br>ND 0.16  | ND 0.14<br>ND 0.15<br>ND 0.16     | ND 0.14<br>ND 0.15<br>ND 0.16     | ND 0.14<br>ND 0.15<br>ND 0.16  |
| 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.086 H<br>ND 0.1 H<br>ND 0.083 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.086<br>ND 0.1<br>ND 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.086<br>ND 0.1<br>ND 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.086<br>ND 0.1<br>ND 0.083 | ND 0.086<br>ND 0.1<br>ND 0.083    | ND 0.086<br>ND 0.1<br>ND 0.083    | ND 0.086<br>ND 0.1<br>ND 0.083 |
| 2,2-Dichloropropane 2-Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.46 H<br>ND 0.33 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.46<br>0.34 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.46<br>ND 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.46<br>ND 0.33             | ND 0.46<br>ND 0.33                | ND 0.46<br>ND 0.33                | ND 0.46<br>ND 0.33             |
| 2-Chlorotoluene 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.11 H<br>ND 0.17 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.11<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.17             | ND 0.11<br>ND 0.17                | ND 0.11<br>ND 0.17                | ND 0.11<br>ND 0.17             |
| 4-Chlorotoluene 4-Isopropyltoluene Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.1 H<br>ND 0.15 H<br>ND 3.8 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.1<br>ND 0.15<br>ND 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.1<br>ND 0.15<br>ND 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND 0.1<br>ND 0.15<br>ND 3.8    | ND 0.1<br>ND 0.15<br>ND 3.8       | ND 0.1<br>ND 0.15<br>ND 3.8       | ND 0.1<br>ND 0.15<br>ND 3.8    |
| Benzene<br>Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.08 H<br>ND 0.091 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.08<br>ND 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.08<br>ND 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.08<br>ND 0.091            | ND 0.08<br>ND 0.091               | ND 0.08<br>ND 0.091               | ND 0.08<br>ND 0.091            |
| Bromochloromethane Bromodichloromethane Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.18 H<br>ND 0.14 H<br>ND 0.19 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.18<br>ND 0.14<br>ND 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.18<br>ND 0.14<br>ND 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.18<br>ND 0.14<br>ND 0.19  | ND 0.18<br>ND 0.14<br>ND 0.19     | ND 0.18<br>ND 0.14<br>ND 0.19*+   | ND 0.18<br>ND 0.14<br>ND 0.19  |
| Bromomethane<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.21 H<br>ND 0.36 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.21<br>ND 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.21<br>ND 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.21<br>ND 0.36             | ND 0.21<br>ND 0.36                | ND 0.21<br>0.9 J,B                | ND 0.21<br>ND 0.36             |
| Carbon Tetrachloride Chlorobenzene Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.12 H<br>ND 0.07 H<br>ND 0.24 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.12<br>ND 0.07<br>ND 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.12<br>ND 0.07<br>ND 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.12<br>ND 0.07<br>ND 0.24  | ND 0.12<br>ND 0.07<br>ND 0.24     | ND 0.12 *+<br>ND 0.07<br>ND 0.24  | ND 0.12<br>ND 0.07<br>ND 0.24  |
| Chloroform<br>Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.12 H<br>ND 0.26 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.12<br>ND 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.12<br>ND 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.12<br>ND 0.26             | ND 0.12<br>ND 0.26                | ND 0.12<br>ND 0.26                | ND 0.12<br>ND 0.26             |
| cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.18 H<br>ND 0.15 H<br>ND 0.16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.18<br>ND 0.15<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.18<br>ND 0.15<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.18<br>ND 0.15<br>ND 0.16  | ND 0.18<br>ND 0.15<br>ND 0.16     | ND 0.18<br>ND 0.15<br>ND 0.16     | ND 0.18<br>ND 0.15<br>ND 0.16  |
| Dibromomethane<br>Dichlorodifluoromethane (CFC 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.17 H<br>ND 0.32 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.17<br>ND 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.17<br>ND 0.32             | ND 0.17<br>ND 0.32                | ND 0.17<br>ND 0.32                | ND 0.17<br>ND 0.32             |
| Ethylbenzene Hexachlorobutadiene Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.084 H<br>ND 0.23 H<br>ND 0.11 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.084<br>ND 0.23<br>ND 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.084<br>ND 0.23<br>ND 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.084<br>ND 0.23<br>ND 0.11 | ND 0.084<br>ND 0.23 *+<br>ND 0.11 | ND 0.084<br>ND 0.23 *+<br>ND 0.11 | ND 0.084<br>ND 0.23<br>ND 0.11 |
| Methyl Isobutyl Ketone<br>Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.11 H<br>ND 0.16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.11<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.16             | ND 0.11<br>ND 0.16                | ND 0.11<br>ND 0.16                | ND 0.11<br>ND 0.16             |
| MTBE Naphthalene n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.12 H<br>ND 0.48 H<br>ND 0.18 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.12<br>ND 0.48<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.12<br>ND 0.48<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.12<br>ND 0.48<br>ND 0.18  | ND 0.12<br>ND 0.48<br>ND 0.18     | ND 0.12<br>ND 0.48<br>ND 0.18     | ND 0.12<br>ND 0.48<br>ND 0.18  |
| n-Propylbenzene<br>sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.11 H<br>ND 0.14 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 0.11<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.11<br>ND 0.14             | ND 0.11<br>ND 0.14                | ND 0.11<br>ND 0.14                | ND 0.11<br>ND 0.14             |
| Styrene<br>tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.13 H<br>ND 0.13 H<br>ND 0.1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND 0.13<br>ND 0.13<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.13<br>ND 0.13<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.13<br>ND 0.13<br>ND 0.1   | ND 0.13<br>ND 0.13<br>ND 0.1      | ND 0.13<br>ND 0.13<br>ND 0.1      | ND 0.13<br>ND 0.13<br>ND 0.1   |
| Tetrachloroethene (PCE) Toluene trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.095 H<br>ND 0.11 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.11<br>ND 0.095<br>ND 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.11<br>ND 0.095<br>ND 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND 0.11<br>ND 0.095<br>ND 0.11 | ND 0.095<br>ND 0.11               | ND 0.11<br>ND 0.095<br>ND 0.11    | ND 0.095<br>ND 0.11            |
| trans-1,3-Dichloropropene<br>Trichloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND 0.16 H<br>ND 0.1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND 0.16<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.16<br>ND 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND 0.16<br>ND 0.1              | ND 0.16<br>ND 0.1                 | ND 0.16<br>ND 0.1                 | ND 0.16<br>ND 0.1              |
| Trichlorofluoromethane (CFC 11) Vinyl Acetate Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.13 H<br>ND 0.19 H<br>ND 0.18 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND 0.13<br>ND 0.19<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.13<br>ND 0.19<br>ND 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND 0.13<br>ND 0.19<br>ND 0.18  | ND 0.13<br>ND 0.19*+<br>ND 0.18   | ND 0.13<br>ND 0.19<br>ND 0.18     | ND 0.13<br>ND 0.19<br>ND 0.18  |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND 0.27 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND 0.27                        | ND 0.27                           | ND 0.27                           | ND 0.27                        |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SM 450052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>I-D SULFIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Bicarbonate Alkalinity Carbonate Hydroxide Hydroxide Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                           | <br>                              |                                   | <br>                           |
| Total Alkalinity  Nitrate Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br><b>£</b><br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PA 300.0 - N/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RATE AND SULI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                   |                                   |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NIC AND MANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                   |                                   |                                |
| Arsenic<br>Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L<br><i>EP</i><br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NIC AND MANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                   |                                   |                                |
| Manganese<br>Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L<br>EPA<br>μg/L<br>μg/L<br>nM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>HYDROGAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>μg/L<br>μg/L<br>nM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AMZOGAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>HYDROGAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid i-Hexanoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L  pg/L  pg/L  nM  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM20GAX<br>AM20GAX<br>AM23G VOLA<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L  pg/L  pg/L  nM  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AMZOGAX<br><br>AMZ3G - VOLA<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HYDROGEN   BILE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid i-Hexanoic Acid Isopentanoic Acid Lactic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L  pg/L  pg/L  nM  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid i-Hexanoic Acid Isopentanoic Acid Lactic Acid Pentanoic Acid Propionic Acid Prytryic Acid Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L  pg/L  pg/L  pg/L  nM  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AM20GAX   AM21G - VOLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid i-Hexanoic Acid Isopentanoic Acid Jactic Acid Pentanoic Acid Pentanoic Acid Pyruvic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L  pg/L  pg/L  nM  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid i-Hexanoic Acid lactic Acid Jactic Acid Pentanoic Acid Pertanoic Acid Propionic Acid Propionic Acid Propionic Acid Carbon Dioxide Ethane Ethene Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L  pg/L  pg/L  nM  mg/L                                                                                                                                                                                                                                                                                                                                       | AM20GAX  AM23G VOLA  RSK175 - DI  GuantAtray -C  QuantAtray -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYDROGEN  THE FATTY AC  THE FA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid I-Hexanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Pentanoic Acid Pentanoic Acid Pertanoic Acid Pethanoic Acid Pruvic Acid  Carbon Dioxide Ethane Ethene Methane  APS Bb/C CER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L  pg/L  pg/L  pg/L  nM  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                 | AM20GAX  AM23G - VOLA  RSK175 - DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid I-in-Hexanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Poptanoic Acid Poptanoic Acid Propionic Acid Propionic Acid Pravic Acid  Carbon Dioxide Ethane Ethene Methane  APS BVC CER CFR DCA DCA DCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L  pg/L  pg/L  nM  mg/L  cells/mL  cells/mL  cells/mL  cells/mL  cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMZOGAX  AMZ | HYDROGEN  THE SATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Pyruvic Acid Propionic Acid Pyruvic Acid  Carbon Dioxide Ethane Ethane Methane  APS BVC CER CFR DCA DCAR DCAR DCMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L  pg/L  pg/L  pg/L  pg/L  nM  mg/L  cells/mL  cells/mL  cells/mL  cells/mL  cells/mL  cells/mL  cells/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AMZOGAX  AMZ | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid I-Hexanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Protopinci Acid Propinci Acid Pruvic Acid  Carbon Dioxide Ethane Ethene Methane  APS BVC CER CFR DCA DCAR DCAR DCAR DCM DCMA DECO DIBB BUH DHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L pg/L pg/L pg/L  nM  mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMZOGAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Pentanoic Acid Propionic Acid Propionic Acid Pravice Acid  Carbon Dioxide Ethane Ethene Methane  APS BVC CER CFR DCA DCAR DCAR DCAR DCM DCMA DECO DH8t DHC DHG DDH DHG DDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L  pg/L  pg/L  nM  mg/L  cells/mL                                                                                                                                                                                                                                                                         | AM20GAX   AM23G VOLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HYDROGEN  THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid i-Hexanoic Acid Isopentanoic Acid Isopentanoic Acid Lactic Acid Pentanoic Acid Pyruwic Acid Pyruwic Acid Carbon Dioxide Ethane Ethene Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L  pg/L  pg/L  pg/L  nM  mg/L  cells/mL                                                                                                                                                                                                                                                                                     | AM20GAX  AM20GAX  AM23G - VOLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid I-Hexanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Pentanoic Acid Pentanoic Acid Propionic Acid Pyruvic Acid  Carbon Dioxide Ethane Ethene Methane  APS BbVC CCR CFR DCA DCAR DCAR DCAR DCAR DCM DCMA DECO DHBt DHC DHG DBG DSB DSM EBAC EINC EINC EINC EINC EINC EINC EINC EIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L  pg/L  pg/L  pg/L  pg/L  nM  mg/L  cells/mL                                                                                                                                                                         | AMZOGAX  AMZOGAX  AMZOGAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HYDROGEN  THE FATTY AC  THE FA | ### #### #############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid Isopentanoic Acid Propionic Acid Propio | mg/L  pg/L  pg/L  pg/L  pg/L  pg/L  mg/L  cells/mL                                                                                                                                                                                                         | ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HYDROGEN  THE FATTY AC  TO THE FATTY AC  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Formic Acid Isopentanoic Acid Propionic Acid Propio | mg/L  pg/L  pg/L  pg/L  mg/L  cells/mL     | AMZOGAX  AMZ | HYDROGEN  FUE FATTY AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ### Company of the co |                                |                                   |                                   |                                |
| Manganese  Hydrogen  4-Methylpentanoic Acid Acetic Acid Butyric Acid Butyric Acid Formic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Isopentanoic Acid Pertanoic Acid Pertanoic Acid Pyruvic Acid Pyruvic Acid  Acron Dioxide Ethane Ethene Methane  APS ByVC CER CFR DCA DCAR DCAR DCAR DCAR DCAR DCMA DECO DIBB DHB DHC DHG DSB DSB DSM EBAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L  pg/L  pg/L  pg/L  pg/L  pg/L  mg/L  cells/mL  cells/mL | ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HYDROGEN  THE FATTY AC  THE FA | ### ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                   |                                   |                                |



### NOTES:

Method 200.7: Not sampled on Month 1 (15-18 December 2020) sampling event. For Month 2 (18-20 January 2021) and Month 3 (15-17 February 2021) sampling events, samples were analyzed for total recoverable metals. For Quarter 2 (17-19 May 2021), Quarter 3 (17-19 August 2021), and Quarter 4 (8-10 November 2021) samples were analyzed for dissolved metals.

-- = No data available

\*+ = Laboratory control sample and/or Laboratory control sample duplicate is outside acceptance limits, high biased

 $^1$  + = Initial Calibration Verification (ICV) is outside acceptance limits, high biased

 $\mu g/L = Micrograms per liter$ 

B = Compound was found in the blank and sample

Cells/mL = Cells per milliliter

F1 = Matrix spike and/or Matrix spike duplicate recovery exceeds control limits

F2 = Matrix spike and/or Matrix spike duplicate relative percent difference exceeds control limits

FB = Field blank

FD = Field duplicate

H = Sample was prepped or analyzed beyond the specified holding time

INIT = Initial run

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

MDL =Method detection limit

NA = Not applicable

ND 0.15 = Not detected above indicated laboratory detection limit

nM = Nanomoles per liter

REANL = Reanalysis run

REG = Regular sample

RL = Reporting limit

TB = Trip blank





# TABLE 7 SOIL VAPOR SAMPLING RESULTS: ASTM D-1946 EAB PHASE II EVALUATION REPORT SIGNETICS SITE

| Location    | Commis Doreth            |                | Commis         | Methane |         | Leak Check Compound   |            |
|-------------|--------------------------|----------------|----------------|---------|---------|-----------------------|------------|
| ID          | Sample Depth<br>(ft-bgs) | Sample Purpose | Sample<br>Date |         | Helium  | Average Shroud Helium | Leak Ratio |
| טו          | (IL-bgs)                 |                | Date           | (ppm)   | (%)     | (%)                   | (%)        |
|             |                          | REG            | 02/18/2021     | ND 980  | ND 0.15 | 31.7                  | NE         |
|             |                          | REG            | 03/17/2021     | ND 1500 | 0.23    | 30.2                  | 0.76       |
| SGI001A     | 4.75                     | REG            | 04/16/2021     | ND 1500 | ND 0.15 | 16.1                  | NE         |
| 3GI001A 4.7 | 4.75                     | REG            | 05/21/2021     | ND 1500 | ND 0.15 | 12.1                  | NE         |
|             |                          | REG            | 06/18/2021     | ND 2000 | ND 0.2  | 14.2                  | NE         |
|             |                          | REG            | 07/15/2021     | ND 1600 | ND 0.16 | 18.2                  | NE         |
|             |                          | REG            | 02/18/2021     | ND 980  | ND 0.15 | 31.9                  | NE         |
|             |                          | REG            | 03/17/2021     | ND 1800 | ND 0.18 | 29.3                  | NE         |
| CCIOOID     |                          | REG            | 04/16/2021     | ND 1600 | ND 0.16 | 13.9                  | NE         |
| SGI001B     | 9.8                      | REG            | 05/21/2021     | ND 2300 | ND 0.23 | 17.1                  | NE         |
|             |                          | REG            | 06/18/2021     | ND 2300 | ND 0.23 | 12.5                  | NE         |
|             |                          | REG            | 07/15/2021     | ND 2100 | ND 0.21 | 16.8                  | NE         |
|             |                          | REG            | 02/19/2021     | ND 980  | ND 0.15 | 12.3                  | NE         |
|             |                          | REG            | 03/17/2021     | ND 1500 | ND 0.15 | 11.5                  | NE         |
|             |                          | REG            | 04/16/2021     | ND 1500 | ND 0.15 | 12.4                  | NE         |
|             |                          | FD             | 04/16/2021     | ND 1500 | ND 0.15 | 13.4                  | NE         |
| SGI002A     | 4.75                     | REG            | 05/21/2021     | ND 1500 | ND 0.15 | 12.0                  | NE         |
|             |                          | FD             | 05/21/2021     | ND 1500 | ND 0.15 | 12.8                  | NE         |
|             |                          | REG            | 06/18/2021     | ND 1700 | ND 0.17 | 11.2                  | NE         |
|             |                          | FD             | 06/18/2021     | ND 1600 | ND 0.16 | 11.2                  | NE         |
|             |                          | REG            | 07/15/2021     | ND 2000 | ND 0.2  | 10.0                  | NE         |
|             |                          | REG            | 02/18/2021     | ND 980  | ND 0.15 | 13.0                  | NE         |
|             |                          | REG            | 03/17/2021     | ND 1500 | ND 0.15 | 12.0                  | NE         |
|             |                          | FD             | 03/17/2021     | ND 1500 | ND 0.15 | 13.9                  | NE         |
| CCIOOAR     | 0.35                     | REG            | 04/16/2021     | ND 1500 | ND 0.15 | 14.8                  | NE         |
| SGI002B     | 9.35                     | REG            | 05/21/2021     | ND 1500 | ND 0.15 | 17.3                  | NE         |
|             |                          | REG            | 06/18/2021     | ND 1600 | ND 0.16 | 12.9                  | NE         |
|             |                          | REG            | 07/15/2021     | ND 1600 | ND 0.16 | 21.4                  | NE         |
|             |                          | FD             | 07/15/2021     | ND 1600 | ND 0.16 | 21.4                  | NE         |

### TABLE 7 SOIL VAPOR SAMPLING RESULTS: ASTM D-1946 **EAB PHASE II EVALUATION REPORT** SIGNETICS SITE

|           | Camanda Damela |                | Cl-        | B.d. a.b. a.a. a |         | Leak Check Compound   |            |
|-----------|----------------|----------------|------------|------------------|---------|-----------------------|------------|
| Location  | Sample Depth   | Sample Purpose | Sample     | Methane          | Helium  | Average Shroud Helium | Leak Ratio |
| ID        | (ft-bgs)       |                | Date       | (ppm)            | (%)     | (%)                   | (%)        |
|           |                | REG            | 02/19/2021 | ND 980           | ND 0.15 | 15.5                  | NE         |
|           |                | REG            | 03/17/2021 | ND 1500          | ND 0.15 | 15.3                  | NE         |
|           |                | REG            | 04/16/2021 | ND 1500          | ND 0.15 | 16.8                  | NE         |
| SGI003A   | 3.3            | REG            | 05/21/2021 | ND 1500          | ND 0.15 | 16.2                  | NE         |
|           |                | REG            | 06/18/2021 | ND 1600          | ND 0.16 | 12.0                  | NE         |
|           |                | REG            | 07/15/2021 | 8900             | ND 0.16 | 17.8                  | NE         |
|           |                | REG            | 08/06/2021 | ND 1600          | ND 0.16 | 20.3                  | NE         |
|           | 6.05           | REG            | 02/19/2021 | ND 980           | ND 0.15 | 15.0                  | NE         |
|           |                | FD             | 02/19/2021 | ND 980           | ND 0.15 | 16.8                  | NE         |
|           |                | REG            | 03/17/2021 | ND 1500          | ND 0.15 | 12.8                  | NE         |
| ccionan   |                | REG            | 04/16/2021 | ND 1500          | ND 0.15 | 24.4                  | NE         |
| SGI003B   |                | REG            | 05/21/2021 | ND 1500          | ND 0.15 | 20.2                  | NE         |
|           |                | REG            | 06/18/2021 | ND 1500          | 0.39    | 15.5                  | 2.5        |
|           |                | REG            | 07/15/2021 | ND 1600          | ND 0.16 | 22.0                  | NE         |
|           |                | REG            | 08/06/2021 | ND 1500          | 0.23    | 22.2                  | 1.0        |
|           |                | FB             | 02/18/2021 | ND 980           | ND 0.15 |                       |            |
|           |                | FB             | 02/19/2021 | ND 980           | ND 0.15 |                       |            |
|           |                | FB             | 03/17/2021 | ND 1500          | ND 0.15 |                       |            |
| SGI-BLANK | N/A            | FB             | 04/16/2021 | ND 1500          | ND 0.15 | NM                    | NM         |
|           |                | FB             | 05/21/2021 | ND 1500          | ND 0.15 | 1                     |            |
|           |                | FB             | 06/18/2021 | ND 1600          | 43      | 1                     |            |
|           |                | FB             | 07/15/2021 | ND 1600          | ND 0.16 | 1                     |            |

1Estimated Leak Ratio (%) = [Concentration of Helium in Sample (%)] / [Concentration of Helium in Shroud (%)] X 100. An ambient air leak up to 5% is acceptable, per RWQCB/DTSC, 2015.

Samples analyzed for fixed gases by ASTM Method D-1946.

Detections shown in **bold**.

% = Percent. FB = Field blank

FD = Field duplicate

ft-bgs = Feet below ground surface.

NA = Not applicable.

ND 0.15 = Not detected above indicated laboratory detection limit.

NE = Not estimated since helium not detected in sample.

NM = Not measured.

ppm = parts per million.

REG = Regular sample.

### TABLE 8 ESTIMATED TCE MASS IN GROUDNWATER WITHIN PHASE II TREATABILITY STUDY AREA SIGNETICS SITE



| TCE Contours <sup>5</sup><br>(µg/L)                       | Basel<br>14–16 Septei |                 | Fourth Quarter<br>8–10 November 2021 |                    |  |
|-----------------------------------------------------------|-----------------------|-----------------|--------------------------------------|--------------------|--|
| /La/ -/                                                   | "A" Aquifer Wells     | TCE             | "A" Aquifer Wells                    | TCE                |  |
|                                                           | -                     | _               | S137A                                | 1.2                |  |
|                                                           | -                     |                 | S138A                                | < 10 <sup>1</sup>  |  |
| Wells between boundary and 10 μg/L contour <sup>3,5</sup> | -                     | -               | S143A                                | 9.7                |  |
|                                                           | -                     |                 | S158A                                | < 10 <sup>1</sup>  |  |
|                                                           | -                     |                 | S159A                                | 0.33               |  |
| Geometric mean (µg/L)                                     |                       | NA <sup>2</sup> |                                      | 3.3                |  |
|                                                           |                       |                 |                                      |                    |  |
| Wells between 10 μg/L and 100 μg/L contours               | S137A                 | 17              | S139A                                | 12                 |  |
| (or between boundary and 100 μg/L contour) <sup>3</sup>   | S139A                 | 17              | -                                    | -                  |  |
| Geometric mean (μg/L)                                     |                       | 17              |                                      | 12                 |  |
|                                                           |                       |                 |                                      |                    |  |
|                                                           | S143A                 | 840             | S140A                                | < 200 <sup>1</sup> |  |
| Wells between 100 μg/L and 1,000 μg/L contours            | S159A                 | 140             | S141A                                | 400                |  |
|                                                           | S160A                 | 500             | S160A                                | 160                |  |
| Geometric mean (μg/L)                                     |                       | 389             |                                      | 234                |  |
|                                                           |                       |                 |                                      |                    |  |
|                                                           | S138A                 | 6,800           | S146A                                | 4,100              |  |
| Walls hatuagn 1 000 us /L and 10 000 us /L santours       | S141A                 | 1,400           | -                                    | -                  |  |
| Wells between 1,000 μg/L and 10,000 μg/L contours         | S146A                 | 5,700           | -                                    | -                  |  |
|                                                           | S158A                 | 8,100           | -                                    | -                  |  |
| Geometric mean (μg/L)                                     |                       | 4,579           |                                      | 4,100              |  |
|                                                           |                       |                 |                                      |                    |  |
| A === > 10,000 mm// ========                              | S140A                 | 15,000          | -                                    | _                  |  |
| Area >10,000 μg/L contour                                 | -                     | _               | -                                    | -                  |  |
| Geometric mean (μg/L)                                     |                       | 15,000          |                                      | NA <sup>2</sup>    |  |

| Site Areas <sup>5</sup><br>(sq ft.)                                                                   | Baseline <sup>5</sup><br>14-16 September 2020 | Fourth Quarter <sup>5</sup><br>8–10 November 2021 |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Area between boundary and 10 µg/L contour <sup>3</sup>                                                | NA <sup>2</sup>                               | 6,873                                             |
| Area between 10 µg/L and 100 µg/L contours<br>(or between boundary and 100 µg/L contour) <sup>3</sup> | 4,070                                         | 8,296                                             |
| Area between 100 μg/L and 1,000 μg/L contours                                                         | 6,766                                         | 2,304                                             |
| Area between 1,000 μg/L and 10,000 μg/L contours                                                      | 6,350                                         | 410                                               |
| Area > 10,000 μg/L contour                                                                            | 697                                           | NA <sup>2</sup>                                   |
|                                                                                                       |                                               |                                                   |
| Approximate TCE Mass (lb)                                                                             | 19.0                                          | 1.1                                               |
|                                                                                                       |                                               |                                                   |

| TCE Mass Reduction (lb):    | 17.9 |
|-----------------------------|------|
| TCE Mass Percent Reduction: | 94%  |

### Notes

- 1. Non-detect TCE results shown with "<" and reporting limit. Geometric mean calculation uses reporting limit.
- 2. Not Applicable TCE results outside limits of TCE contours.
- 3. There is no 10 μg/L TCE contour for Baseline conditions, see Figure 5.
- 4. Calculation assumes 0.36 for porosity (Locus, 2021) and 20 feet for aquifer thickness in the "A" Aquifer.
- 5. Square feet calcuated for areas within treatability study boundary, as defined in Figures 5 & 6. Areas estimated using ArcGIS.
- 6. TCE concentrations are presented in μg/L.

### TABLE 8 ESTIMATED TCE MASS IN GROUDNWATER WITHIN PHASE II TREATABILITY STUDY AREA SIGNETICS SITE



### **CALCULATIONS PERFORMED FOR TABLE 8:**

| CALCUALTED VALUES                                       | 14-16 SEP 2     | 020 (Baseline)  | 8-10 NOV 2021 (Q4) |                 |  |
|---------------------------------------------------------|-----------------|-----------------|--------------------|-----------------|--|
| CALCUALTED VALUES                                       | MEANS           | AREAS           | MEANS              | AREAS           |  |
| Area between boundary and 10 µg/L contour <sup>3</sup>  | NA <sup>2</sup> | NA <sup>2</sup> | 3.3                | 6,873           |  |
| Area between 10 μg/L and 100 μg/L contours              |                 |                 |                    |                 |  |
| (or between boundary and 100 µg/L contour) <sup>3</sup> | 17              | 4,070           | 12                 | 8,296           |  |
| Area between 100 μg/L and 1,000 μg/L contours           | 389             | 6,766           | 234                | 2,304           |  |
| Area between 1,000 μg/L and 10,000 μg/L contours        | 4,579           | 6,350           | 4,100              | 410             |  |
| Area > 10,000 µg/L contour                              | 15,000          | 697             | NA <sup>2</sup>    | NA <sup>2</sup> |  |

| ASSUMPTIONS                 |      |      |  |  |  |  |  |  |
|-----------------------------|------|------|--|--|--|--|--|--|
| POROSITY                    | 0.36 |      |  |  |  |  |  |  |
| SATURATED AQUIFER THICKNESS | 20   | feet |  |  |  |  |  |  |

| CONVERSION FACTORS |        |   |            |
|--------------------|--------|---|------------|
| 28.312             | liters | 1 | cubic foot |
| 0.000001           | μg     | 1 | g          |
| 453.59             | g      | 1 | lbs        |

### Baseline TCE Mass Calculation

### Fourth Quarter TCE Mass Calculation

### TABLE 9 ANALYTICAL RESULTS SUMMARY FOR EVALUATION OF KEY DATA OCTOBER 2016 – NOVEMBER 2021 SIGNETICS SITE



|                | Phase I                                | Results                                 |                                             |                                          | Pha                                      | se II Monitoring Eve                     | nts                                        |                                             |                                            | % Reduct                | ions & Action Le                         | vels                      |
|----------------|----------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------|------------------------------------------|---------------------------|
|                | Phase I<br>Baseline<br>19–20 Oct. 2016 | Phase I<br>Quarter 4<br>15-16 Nov. 2017 | 14-16 Sep. 2020<br>(Baseline<br>Monitoring) | 15-18 Dec. 2020<br>(Month 1/<br>30 Days) | 18-20 Jan. 2021<br>(Month 2/<br>60 Days) | 15-17 Feb. 2021<br>(Month 3/<br>90 Days) | 17-19 May 2021<br>(Quarter 2/<br>180 days) | 17-19 Aug. 2021<br>(Quarter 3)<br>270 days) | 8-10 Nov. 2021<br>(Quarter 4/<br>360 days) | Phase II<br>% Reduction | Overall<br>% Reduction<br>Phase I and II | Action<br>Level<br>(µg/L) |
| S137A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 3.1                                    | 3.1                                     | <5                                          | <2                                       | <0.5                                     | <0.1                                     | <0.1                                       | <0.2                                        | <0.2                                       | NA                      | >93.5%                                   | 5                         |
| TCE            | 270                                    | 12                                      | 17                                          | 2                                        | 0.5                                      | 0.52                                     | 1.1                                        | 0.81 J                                      | 1.2                                        | 92.9%                   | 99.6%                                    | 5                         |
| cis-1,2-DCE    | 290                                    | 410                                     | 380                                         | 190                                      | 15                                       | 4                                        | 4.8                                        | 21                                          | 25                                         | 93.4%                   | 91.4%                                    | 6                         |
| Vinyl Chloride | 3.1                                    | 110                                     | 38                                          | 180                                      | 110                                      | 37                                       | 23                                         | 77                                          | 130                                        | -242.1%                 | -4093.5%                                 | 0.5                       |
| Ethene         | 0.022                                  | 220                                     | 1.1                                         | 89                                       | 170                                      | 140                                      | 140                                        | 180                                         | 210                                        | -18990.9%               | -954445.5%                               | NA                        |
| Freon 113      | 14                                     | 13                                      | <5                                          | <2                                       | <0.5                                     | < 0.17                                   | <0.17                                      | < 0.34                                      | < 0.34                                     | NA                      | >97.6%                                   | 1200                      |
| S139A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 13                                     | 0.5                                     | <5                                          | <1                                       | <10                                      | <2                                       | <10                                        | <10                                         | <5                                         | NA                      | >61.5%                                   | 5                         |
| TCE            | 1200                                   | 6.4                                     | 17                                          | 1.2                                      | <10                                      | 6.6 J                                    | 24 J                                       | 20 J                                        | 12 J                                       | 29.4%                   | *99%                                     | 5                         |
| cis-1,2-DCE    | 2,000                                  | 30                                      | 410                                         | 9                                        | 690                                      | 740                                      | 3,900                                      | 3,300                                       | 2,000                                      | -387.8%                 | 0.0%                                     | 6                         |
| Vinyl Chloride | 13                                     | 38                                      | 310                                         | 140                                      | 660                                      | 480                                      | 610                                        | 570                                         | 580                                        | -87.1%                  | -4361.5%                                 | 0.5                       |
| Ethene         | 0.021                                  | 96                                      | 72                                          | 1500                                     | 1,400                                    | 1,300                                    | 730                                        | 760                                         | 610                                        | -747.2%                 | -2904661.9%                              | NA                        |
| Freon 113      | 220                                    | 2                                       | 17                                          | 1.1                                      | <10                                      | <3.4                                     | <17                                        | <17                                         | <8.5                                       | >50%                    | >96.1%                                   | 1200                      |
| S159A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | NA                                     | NA                                      | <5                                          | < 5                                      | <10                                      | <0.4                                     | <0.1                                       | <0.1                                        | <0.1                                       | NA                      | NA                                       | 5                         |
| TCE            | NA                                     | NA                                      | 140                                         | 40                                       | <10                                      | 1.6 J                                    | 0.52                                       | 0.37 J                                      | 0.33 J                                     | 99.8%                   | NA                                       | 5                         |
| cis-1,2-DCE    | NA                                     | NA                                      | 580                                         | 620                                      | 480                                      | 210                                      | 2.3                                        | 1.1                                         | 1.5                                        | 99.7%                   | NA                                       | 6                         |
| Vinyl Chloride | NA                                     | NA                                      | 5.3                                         | 37                                       | 50                                       | 41                                       | 0.82                                       | 0.62                                        | <0.18                                      | 96.6%                   | NA                                       | 0.5                       |
| Ethene         | NA                                     | NA                                      | 2.4                                         | 5.8                                      | 33                                       | 100                                      | 19                                         | 12                                          | 3.9                                        | -62.5%                  | NA                                       | NA                        |
| Freon 113      | NA                                     | NA                                      | 6.9                                         | 6.8                                      | <10                                      | <0.68                                    | <0.17                                      | < 0.17                                      | < 0.17                                     | >97.5%                  | NA                                       | 1200                      |

Notes:

NA - Not Applicable

\* - Percent Reduction Approx.

> - Min Reduction

< - Non-Detect

Result Qualifiers:

J - Estimated

E - Exceeds calibration range

H - Exceeds Holding time

Result units are micrograms per liter.

### TABLE 9 ANALYTICAL RESULTS SUMMARY FOR EVALUATION OF KEY DATA OCTOBER 2016 – NOVEMBER 2021 SIGNETICS SITE



|                | Phase I                                | Results                                 |                                             |                                          | Pha                                      | se II Monitoring Eve                     | nts                                        |                                             |                                            | % Reduct                | ions & Action Le                         | vels                      |
|----------------|----------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------|------------------------------------------|---------------------------|
|                | Phase I<br>Baseline<br>19-20 Oct. 2016 | Phase I<br>Quarter 4<br>15-16 Nov. 2017 | 14-16 Sep. 2020<br>(Baseline<br>Monitoring) | 15-18 Dec. 2020<br>(Month 1/<br>30 Days) | 18-20 Jan. 2021<br>(Month 2/<br>60 Days) | 15-17 Feb. 2021<br>(Month 3/<br>90 Days) | 17-19 May 2021<br>(Quarter 2/<br>180 days) | 17-19 Aug. 2021<br>(Quarter 3/<br>270 days) | 8-10 Nov. 2021<br>(Quarter 4/<br>360 days) | Phase II<br>% Reduction | Overall<br>% Reduction<br>Phase I and II | Action<br>Level<br>(µg/L) |
| S141A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 10                                     | 25                                      | <25                                         | <25                                      | <25                                      | <2.5                                     | 0.85 H                                     | 2 J                                         | 1.1 J                                      | NA                      | >89%                                     | 5                         |
| TCE            | 270                                    | 3,800                                   | 1,400                                       | 260                                      | 230                                      | 220                                      | 250 H                                      | 730                                         | 400                                        | 71.4%                   | -48.1%                                   | 5                         |
| cis-1,2-DCE    | 1,600                                  | 1,000                                   | 560                                         | 1,800                                    | 1,500                                    | 1,300                                    | 1,200 H                                    | 710                                         | 620                                        | -10.7%                  | 61.3%                                    | 6                         |
| Vinyl Chloride | 350                                    | 25                                      | 25                                          | 140                                      | 260                                      | 210                                      | 150 H                                      | 120                                         | 100                                        | -300.0%                 | 71.4%                                    | 0.5                       |
| Ethene         | 1.1                                    | 0.93                                    | 8                                           | 150                                      | 580                                      | 400                                      | 670                                        | 450                                         | 190                                        | -2305.1%                | -17172.7%                                | NA                        |
| Freon 113      | 40                                     | 780                                     | 240                                         | 72                                       | 48                                       | 22                                       | 120 H                                      | 120                                         | 51                                         | 78.8%                   | -27.5%                                   | 1200                      |
| S143A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 8.3                                    | 7.1                                     | <10                                         | <25                                      | <2.5                                     | <0.1                                     | 0.11 J                                     | 0.22 J                                      | <0.4                                       | NA                      | >95.2%                                   | 5                         |
| TCE            | 320                                    | 210                                     | 840                                         | <25                                      | <2.5                                     | 1.3                                      | 5.4                                        | 3.4                                         | 9.7                                        | 98.8%                   | 97.0%                                    | 5                         |
| cis-1,2-DCE    | 760                                    | 3900                                    | 590                                         | 1,800                                    | 21                                       | 4.3                                      | 15                                         | 1.8                                         | 24                                         | 95.9%                   | 96.8%                                    | 6                         |
| Vinyl Chloride | 8.3                                    | 230                                     | <10                                         | 420                                      | 12                                       | 5.2                                      | 17                                         | 9.9                                         | 220                                        | NA                      | -2550.6%                                 | 0.5                       |
| Ethene         | NA                                     | NA                                      | < 0.12                                      | 38                                       | 950                                      | 450                                      | 290                                        | 470                                         | 670                                        | NA                      | NA                                       | NA                        |
| Freon 113      | 33                                     | 29                                      | 11                                          | <25                                      | <2.5                                     | < 0.17                                   | 0.46 J                                     | 0.78                                        | <0.68                                      | >93.8%                  | >97.9%                                   | 1200                      |
| S160A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | NA                                     | NA                                      | <25                                         | <10                                      | <25                                      | <2                                       | <2                                         | <2                                          | <2                                         | NA                      | NA                                       | 5                         |
| TCE            | NA                                     | NA                                      | 500                                         | <10                                      | <25                                      | 16                                       | 21                                         | 59                                          | 160                                        | 68.0%                   | NA                                       | 5                         |
| cis-1,2-DCE    | NA                                     | NA                                      | 1,600                                       | 1,300                                    | 1,400                                    | 1,100                                    | 1,200                                      | 680                                         | 840                                        | 47.5%                   | NA                                       | 6                         |
| Vinyl Chloride | NA                                     | NA                                      | 300                                         | 77                                       | 78                                       | 69                                       | 97                                         | 71                                          | 95                                         | 68.3%                   | NA                                       | 0.5                       |
| Ethene         | NA                                     | NA                                      | 850                                         | 25                                       | 43                                       | 72                                       | 64                                         | 40                                          | 42                                         | 95.1%                   | NA                                       | NA                        |
| Freon 113      | NA                                     | NA                                      | <25                                         | <10                                      | <25                                      | 4.3 J                                    | 4.9 J                                      | 3.4                                         | 3.8 J                                      | NA                      | NA                                       | 1200                      |

Notes:

NA - Not Applicable

\* - Percent Reduction Approx.

> - Min Reduction

< - Non-Detect

Result Qualifiers: J - Estimated

E - Exceeds calibration range

H - Exceeds Holding time

Result units are micrograms per liter.

### TABLE 9 ANALYTICAL RESULTS SUMMARY FOR EVALUATION OF KEY DATA OCTOBER 2016 – NOVEMBER 2021 SIGNETICS SITE



|                | Phase I                                | Results                                 |                                             |                                          | Pha                                      | se II Monitoring Eve                     | nts                                        |                                             |                                            | % Reduct                | tions & Action Le                        | vels                      |
|----------------|----------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------|------------------------------------------|---------------------------|
|                | Phase I<br>Baseline<br>19–20 Oct. 2016 | Phase I<br>Quarter 4<br>15-16 Nov. 2017 | 14-16 Sep. 2020<br>(Baseline<br>Monitoring) | 15-18 Dec. 2020<br>(Month 1/<br>30 Days) | 18-20 Jan. 2021<br>(Month 2/<br>60 Days) | 15-17 Feb. 2021<br>(Month 3/<br>90 Days) | 17-19 May 2021<br>(Quarter 2)<br>180 days) | 17-19 Aug. 2021<br>(Quarter 3/<br>270 days) | 8-10 Nov. 2021<br>(Quarter 4/<br>360 days) | Phase II<br>% Reduction | Overall<br>% Reduction<br>Phase I and II | Action<br>Level<br>(µg/L) |
| S138A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 83                                     | 170                                     | <250                                        | <250                                     | <250                                     | <25                                      | <2 H                                       | <5                                          | <10                                        | NA                      | >88%                                     | 5                         |
| TCE            | 9,100                                  | 720                                     | 6800                                        | 250                                      | 250                                      | 25                                       | 16 H                                       | 88                                          | 10                                         | 99.9%                   | 99.9%                                    | 5                         |
| cis-1,2-DCE    | 13,000                                 | 24,000                                  | 25,000                                      | 23,000                                   | 17,000                                   | 1,900                                    | 3,900 H                                    | 2,400                                       | 4,500                                      | 82.0%                   | 65.4%                                    | 6                         |
| Vinyl Chloride | 83                                     | 180                                     | 460                                         | 480                                      | 1,200                                    | 9,700                                    | 2900 H                                     | 990                                         | 2,000                                      | -334.8%                 | -2309.6%                                 | 0.5                       |
| Ethene         | 0.41                                   | 520                                     | 740                                         | 1,400                                    | 860                                      | 1,100                                    | 2000                                       | 2,000                                       | 2,400                                      | -224.3%                 | -585265.9%                               | NA                        |
| Freon 113      | 1,000                                  | 820                                     | 2,000                                       | 3,600                                    | 1,700                                    | 760                                      | 520 J                                      | 290                                         | 410                                        | 79.5%                   | 59.0%                                    | 1200                      |
| S140A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 24                                     | 500                                     | <1000                                       | < 500                                    | <1300                                    | <100                                     | <40 H                                      | <100                                        | <200                                       | NA                      | >-733.3%                                 | 5                         |
| TCE            | 52,000                                 | 16,000                                  | 15,000                                      | < 500                                    | 2,300                                    | 6,400                                    | 1600 H                                     | 110 J                                       | <200                                       | >98.7%                  | >99.6%                                   | 5                         |
| cis-1,2-DCE    | 27,000                                 | 52,000                                  | 50,000                                      | 44,000                                   | 57,000                                   | 48,000                                   | 55,000 H                                   | 48,000                                      | 53,000                                     | -6.0%                   | -96.3%                                   | 6                         |
| Vinyl Chloride | 32                                     | 500                                     | <1000                                       | 3,300                                    | 2,400                                    | 1,600                                    | 1,700 H                                    | 2,600                                       | 2800                                       | NA                      | -8650.0%                                 | 0.5                       |
| Ethene         | 0.77                                   | 46                                      | 580                                         | 1,800                                    | 1,700                                    | 1,400                                    | 1,100                                      | 1,600                                       | 2,000                                      | -244.8%                 | -259640.3%                               | NA                        |
| Freon 113      | 4,400                                  | 2,000                                   | <1000                                       | 980                                      | 1,300                                    | 740                                      | 740 H                                      | 660                                         | 630 J                                      | NA                      | *85.7%                                   | 1200                      |
| S146A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | 3.4                                    | 63                                      | <50                                         | <100                                     | <200                                     | <20                                      | 7.3 J, H                                   | 38                                          | 43 J                                       | NA                      | *-1164.7%                                | 5                         |
| TCE            | 420                                    | 540                                     | 5,700                                       | 350                                      | 200                                      | 890                                      | 910 H                                      | 5,000                                       | 4,100                                      | 28.1%                   | -876.2%                                  | 5                         |
| cis-1,2-DCE    | 890                                    | 6,800                                   | 4,200                                       | 8,500                                    | 11,000                                   | 7,500                                    | 7,700 H                                    | 5,900                                       | 12,000                                     | -185.7%                 | -1248.3%                                 | 6                         |
| Vinyl Chloride | 3.1                                    | 63                                      | <50                                         | 340                                      | 230                                      | 540                                      | 1,100 H                                    | 49 J                                        | 75 J                                       | NA                      | *-2319.4%                                | 0.5                       |
| Ethene         | 0.07                                   | 4.2                                     | 220                                         | 150                                      | 140                                      | 100                                      | 110                                        | 120                                         | 180                                        | 18.2%                   | -257042.9%                               | NA                        |
| Freon 113      | 780                                    | 2,900                                   | 4,300                                       | 4,200                                    | 4,800                                    | 3,800                                    | 3,400 H                                    | 4,600                                       | 6,100                                      | -41.9%                  | -682.1%                                  | 1200                      |
| S158A          |                                        |                                         |                                             |                                          |                                          |                                          |                                            |                                             |                                            |                         |                                          |                           |
| PCE            | NA                                     | NA                                      | 17                                          | <250                                     | < 500                                    | <50                                      | <2 H                                       | 0.3 J                                       | <10                                        | >41.2%                  | NA                                       | 5                         |
| TCE            | NA                                     | NA                                      | 8,100 E                                     | 2,600                                    | < 500                                    | <50                                      | 19 H                                       | 1.6                                         | <10                                        | *99.9%                  | NA                                       | 5                         |
| cis-1,2-DCE    | NA                                     | NA                                      | 5,700                                       | 22,000                                   | 22,000                                   | 21,000                                   | 650 H                                      | 44                                          | 1,200                                      | 78.9%                   | NA                                       | 6                         |
| Vinyl Chloride | NA                                     | NA                                      | 24                                          | <250                                     | < 500                                    | 310                                      | 4,100 H                                    | 130                                         | 5,100                                      | -21150.0%               | NA                                       | 0.5                       |
| Ethene         | NA                                     | NA                                      | 1                                           | 27                                       | 31                                       | 270                                      | 3,400                                      | 2,000                                       | 5,200                                      | -399900.0%              | NA                                       | NA                        |
| Freon 113      | NA                                     | NA                                      | 1,500                                       | 2,900                                    | 1,100                                    | 690                                      | 350 H                                      | 79                                          | 860                                        | 42.7%                   | NA                                       | 1200                      |

Notes:

NA - Not Applicable

\* - Percent Reduction Approx.

> - Min Reduction

< - Non-Detect

Result Qualifiers:

J - Estimated

E - Exceeds calibration range

H - Exceeds Holding time

Result units are micrograms per liter.



|                               | Units      |        | 16 Sep. 2<br>Baseline |        |       | 20 Nov. Injection |      |          | 18 Dec. 2<br>:h 1 (30 D |            |      | 20 Jan. 2<br>:h 2 (60 I |                                         |                  | 17 Feb. 2<br>th 3 (90 I |        |            | 19 May 2<br>(180 Da |            |                                         | 19 Aug.<br>3 (270 Da |           |        | 0 Nov. 20<br>I (360 Da |            |
|-------------------------------|------------|--------|-----------------------|--------|-------|-------------------|------|----------|-------------------------|------------|------|-------------------------|-----------------------------------------|------------------|-------------------------|--------|------------|---------------------|------------|-----------------------------------------|----------------------|-----------|--------|------------------------|------------|
| S137A                         |            |        |                       |        |       |                   |      |          |                         |            |      |                         |                                         |                  |                         |        |            |                     |            |                                         |                      |           |        |                        |            |
| Toc'                          | mg/L       |        | 1.5                   |        |       | 520               |      |          | 110                     |            |      | 85                      | 000000000000000000000000000000000000000 |                  | 19                      |        |            | 4.7                 |            | *************************************** | 4                    |           |        | 4.7                    |            |
| Dissolved Oxygen <sup>2</sup> | mg/L       |        | 0.3                   |        |       | 1.23              |      |          | 0.57                    |            |      | 0.32                    |                                         |                  | 0.47                    |        |            | 2.69                |            |                                         | 0.7                  |           |        | 0.59                   |            |
| Nitrate as Nitrogen           | mg/L       |        | 1.3                   |        |       | NS                |      |          | 0.25                    | U          |      | 0.25                    |                                         |                  | 0.1                     | U      |            | 0.1                 |            |                                         | 0.5                  |           |        | 0.5                    | U          |
| Ferrous Iron                  | mg/L       |        | 0                     |        |       | 3.5               |      |          | 2                       |            |      | 4                       |                                         | <b></b>          | 2.5                     |        |            | 4                   |            |                                         | 4.5                  |           |        | 5.5                    |            |
| Sulfate                       | mg/L       |        | 180                   |        |       | NS                |      |          | 1                       | U          |      | 1.6                     |                                         | 1                | 0.9                     |        |            | 4.4                 |            |                                         | 25                   | J         |        | 46                     |            |
| Carbon Dioxide                | mg/L       |        | 31.2                  |        |       | NS                |      |          | 23                      |            |      | 26.9                    |                                         |                  | 60.4                    |        |            | 39.3                |            |                                         | 124                  |           |        | 155                    |            |
| Hydrogen                      | nM         |        | 1.6                   | J      |       | NS                |      |          | 15                      |            |      | 4.5                     |                                         |                  | 2.2                     |        |            | 2.2                 |            |                                         | 15                   |           |        | 0.9                    | J          |
| Dissolved Methane             | mg/L       |        | 1.5                   |        |       | NS                |      |          | 4.3                     |            |      | 12                      |                                         |                  | 18                      |        |            | 9.1                 |            |                                         | 9.5                  |           |        | 9.2                    |            |
| Methane well head             | ppm        |        | 0                     |        |       | 210               |      |          | 530                     |            |      | 50250                   |                                         |                  | 50250                   |        |            | 24000               |            |                                         | 9600                 |           |        | 670                    |            |
| DHC <sup>3</sup>              | cells/mL   |        | 6.2E+2                |        |       | NS                |      |          | NS                      |            |      | NS                      |                                         |                  | 3.4E+4                  |        |            | NS                  |            |                                         | 8.0E+4               |           |        | 1.9E+4                 |            |
| S139A                         |            |        |                       |        |       |                   |      |          |                         |            |      |                         |                                         |                  |                         |        |            |                     |            |                                         |                      |           |        |                        |            |
| TOC1                          | mg/L       |        | 2.0                   |        |       | 190               |      |          | 94                      |            |      | 68                      |                                         |                  | 22                      |        |            | 5.4                 |            |                                         | 4.9                  |           |        | 3.2                    |            |
| Dissolved Oxygen <sup>2</sup> | mg/L       |        | 0.3                   |        |       | 1.13              |      |          | 0.16                    |            |      | 0.22                    |                                         |                  | 0.48                    |        |            | 2.27                |            |                                         | 0.75                 |           |        | 0.66                   |            |
| Nitrate as Nitrogen           | mg/L       |        | 1.3                   | U      |       | NS                |      |          | 1.3                     | U          |      | 1.3                     | U                                       |                  | 0.88                    | U      |            | 0.5                 | U          |                                         | 0.5                  |           |        | 0.5                    | Ū          |
| Ferrous Iron                  | mg/L       |        | 2                     |        |       | 4                 |      |          | 0.5                     |            |      | 0                       |                                         |                  | 1                       |        |            | 4.5                 |            |                                         | 5.5                  |           |        | 4                      |            |
| Sulfate                       | mg/L       |        | 190                   |        |       | NS                |      |          | 5                       | U          |      | 8.8                     |                                         |                  | 9                       |        |            | 81                  |            |                                         | 57                   |           |        | 120                    |            |
| Carbon Dioxide                | mg/L       |        | 78.7                  |        |       | NS                |      |          | 97                      |            |      | 99.2                    |                                         |                  | NS                      |        |            | 108                 |            |                                         | 6.83                 |           |        | 121                    |            |
| Hydrogen                      | nM         |        | 2.2                   |        |       | NS                |      |          | 3.1                     |            |      | 1.2                     | J                                       |                  | 1.2                     | J      |            | 4.2                 |            |                                         | 0.96                 | J         |        | 1.2                    | J          |
| Dissolved Methane             | mg/L       |        | 8.1                   |        |       | NS                |      |          | 8.7                     |            |      | 14                      |                                         |                  | 13                      |        |            | 7.6                 |            |                                         | 6.8                  |           |        | 7.6                    |            |
| Methane well head             | ppm        |        | 0                     |        |       | 1150              |      |          | 2050                    |            |      | 50250                   |                                         |                  | 50250                   |        |            | 16500               |            |                                         | 9400                 |           |        | 2000                   |            |
| DHC <sup>3</sup>              | cells/mL   |        | 5.8E+2                |        |       | NS                |      |          | NS                      |            |      | NS                      |                                         |                  | 3.4E+5                  |        |            | NS                  |            |                                         | 4.4E+4               |           |        | 2.4E+4                 |            |
| S159A                         |            |        |                       |        |       |                   |      |          |                         |            |      |                         |                                         |                  |                         |        |            |                     |            |                                         |                      |           |        |                        |            |
| тос'                          | mg/L       |        | 1.8                   |        |       | 580               | ۸    |          | 410                     |            |      | 510                     |                                         |                  | 460                     |        |            | 83                  |            |                                         | 54                   |           |        | 19                     |            |
| Dissolved Oxygen <sup>2</sup> | mg/L       |        | 0.3                   |        |       | 2.18              |      |          | 0.38                    |            |      | 0.34                    |                                         |                  | 0.54                    |        |            | 2.43                |            |                                         | 0.6                  |           |        | 0.84                   |            |
| Nitrate as Nitrogen           | mg/L       |        | 1.3                   | U      |       | NS                |      |          | 1.3                     | U          |      | 1.3                     | U                                       |                  | 0.5                     | U      |            | 0.5                 | U          |                                         | 0.5                  | U         |        | 0.5                    | U          |
| Ferrous Iron                  | mg/L       |        | 0                     |        |       | 0.5               |      |          | 4.5                     |            |      | 2.5                     |                                         |                  | 3                       |        |            | 3.5                 |            |                                         | 4                    |           |        | 1                      |            |
| Sulfate                       | mg/L       |        | 180                   |        |       | NS                |      |          | 6.8                     |            |      | 5                       | U                                       |                  | 2                       | J      |            | 1.8                 | U          |                                         | 1.8                  |           |        | 1.8                    | U          |
| Carbon Dioxide                | mg/L       |        | 25.8                  |        |       | NS                |      |          | 284                     |            |      | 347                     |                                         |                  | 285                     |        |            | 191                 |            |                                         | 265                  |           |        | 167                    |            |
| Hydrogen                      | nM         |        | 2                     |        |       | NS                |      |          | 0.83                    | J          |      | 2.1                     | J                                       |                  | 3.6                     |        |            | 4.6                 |            |                                         | 3                    |           |        | 1.9                    | J          |
| Dissolved Methane             | mg/L       |        | 0.2                   |        |       | NS                |      |          | 0.19                    |            |      | 3.4                     |                                         |                  | 8.5                     |        |            | 7.4                 |            |                                         | 6.5                  |           |        | 2.9                    |            |
| Methane well head             | ppm        |        | 15                    |        |       | 155               |      |          | 230                     |            |      | 4300                    |                                         |                  | 50250                   |        |            | 100500              |            |                                         | 50250                |           |        | 50250                  |            |
| DHC <sup>3</sup>              | cells/mL   |        | 1.4E+0                |        |       | NS                |      |          | NS .                    |            |      | NS                      |                                         |                  | 1.1E+5                  |        |            | NS                  |            |                                         | 1.9E+3               |           |        | 2.0E+3                 |            |
|                               |            | MIN    | MEDIAN                | LAAV   | MIN   | MEDIAN            | MAN  | MIN      | MEDIAN                  |            |      | MEDIAN                  |                                         | 9A, S159,<br>MIN | A)<br>MEDIAN            | ****   | MIN        | MEDIAN              | MAN        | MIN                                     | MEDIAN               | 1 14 1 1  | MIN    | MEDIAN                 |            |
| TOC1                          |            |        |                       | T      |       |                   | ·    |          |                         |            |      |                         | T                                       |                  | T                       |        |            |                     | ·          |                                         | T                    | T         |        | T                      |            |
|                               | mg/L       | 1.5    | 1.8                   | 2      | 190   | 520               | 580  | 94       | 110                     | 410        | 68   | 85                      | 510                                     | 19               | 22                      | 460    | 4.7        | 5.4                 | 83         | 4                                       | 4.9                  | 54        | 3.2    | 4.7                    | 19         |
| Dissolved Oxygen <sup>2</sup> | mg/L       | 0.3    | 0.3                   | 0.3    | 1.13  | 1.23              | 2.18 | 0.16     | 0.38                    | 0.57       | 0.22 | 0.32                    | 0.34                                    | 0.47             | 0.48                    | 0.54   | 2.27       | 2.43                | 2.69       | 0.6                                     | 0.7                  | 0.75      | 0.59   | 0.66                   | 0.84       |
| Nitrate as Nitrogen           | mg/L       | 1.3    | 1.3                   | 1.3    | 0.5   | NA<br>3.5         | 0 4  | 0.25     | 1.3                     | 1.3        | 0.25 | 1.3<br>2.5              | 1.3                                     | 0.1              | 0.5<br>2.5              | 0.88   | 0.1<br>3.5 | 0.5                 | 0.5<br>4.5 | 0.5                                     | 0.5                  | 0.5       | 0.5    | 0.5                    | 0.5        |
| Ferrous Iron<br>Sulfate       | mg/L       | 180    | 180                   | 190    | 0.5   | NA                | 0    | 0.5      | 2<br>5                  | 4.5<br>6.8 | 1.6  | 5                       | 8.8                                     | 0.9              | 2.5                     | 9      | 3.5        | 4.4                 | 81         | 1.8                                     | 4.5<br>25            | 5.5<br>57 | 1.8    | 4 46                   | 5.5<br>120 |
|                               | mg/L       | 25.8   | 31.2                  |        | 0     | NA<br>NA          | 0    | 23       | 97                      |            | 26.9 |                         |                                         |                  | 172.7                   | 285    | 39.3       |                     | ļ          | 6.83                                    | <del> </del>         | 265       | 1.8    |                        | 167        |
| Carbon Dioxide<br>Hydrogen    | mg/L<br>nM | 1.6    | 2                     | 78.7   | 0     | NA<br>NA          | 0    | 0.83     | 3.1                     | 284<br>15  | 1.2  | 99.2<br>2.1             | 347<br>4.5                              | 1.2              | 2.2                     | 3.6    | 2.2        | 108                 | 191<br>4.6 | 0.96                                    | 124                  | 15        | 0.9    | 155                    | 1.9        |
| Dissolved Methane             | mg/L       | 0.2    | 1.5                   | 8.1    | 0     | NA<br>NA          | 0    | 0.83     | 4.3                     | 8.7        | 3.4  | 12                      | 14.3                                    | 8.5              | 13                      | 18     | 7.4        | 7.6                 | 9.1        | 6.5                                     | 6.8                  | 9.5       | 2.9    | 7.6                    | 9.2        |
| Methane well head             | ppm        | 0.2    | 0                     | 15     | 155   | 210               | 1150 | 230      | 530                     | 2050       | 4300 | 50250                   | 50250                                   | 50250            | 50250                   | 50250  | 16500      | 24000               | 100500     |                                         | 9600                 | 50250     | 670    | 2000                   | 50250      |
| DHC <sup>3</sup>              | cells/mL   |        |                       | 6.2E+2 | NA NA | NA<br>NA          | NA   | NA<br>NA | NA NA                   | NA         | NA   | NA                      | NA                                      | 3.4E+4           | 1.1E+5                  |        | NA         | NA                  | NA         | 1.9E+3                                  | 4.4E+4               |           | 2.0E+3 |                        | 2.4E+4     |
| DHC                           | cells/mL   | 1.4E+0 | 13.8E+2               | 0.2E+2 | I NA  | L NA              | L NA | NA NA    | NA                      | NA         | I NA | L NA                    | I NA                                    | 15.4E+4          | 1.1E+5                  | 3.4E+5 | NA         | NA                  | L NA       | 1.9E+3                                  | 14.4E+4              | O.UE+4    | 2.UE+3 | 1.9E+4                 | ∠.4E+4     |



|                               | Units    |        | 6 Sep. 2<br>Baseline | 1020   |      | 20 Nov. 2<br>Injection |      |      | 18 Dec. 2<br>h 1 (30 I |         |           | 20 Jan. 2<br>th 2 (60 |         |         | 17 Feb. :<br>th 3 (90 |        |      | 19 May 2<br>(180 Da |              |        | 19 Aug.<br>3 (270 D |        |          | 0 Nov. 2<br>(360 Da |        |
|-------------------------------|----------|--------|----------------------|--------|------|------------------------|------|------|------------------------|---------|-----------|-----------------------|---------|---------|-----------------------|--------|------|---------------------|--------------|--------|---------------------|--------|----------|---------------------|--------|
| S141A                         |          |        |                      |        |      |                        |      |      |                        |         |           |                       |         |         |                       |        |      |                     |              |        |                     |        |          |                     |        |
| Toc'                          | mg/L     |        | 1.7                  |        |      | 40                     | U    |      | 9.7                    |         |           | 12                    |         |         | 9.4                   |        |      | 7.1                 |              |        | 4.7                 | 7      |          | 4.2                 |        |
| Dissolved Oxygen <sup>2</sup> | mg/L     |        | 0.3                  |        |      | 0.97                   |      |      | 0.53                   |         |           | 0.45                  |         |         | 0.49                  | 1      |      | 2.07                |              |        | 0.65                | 5      |          | 0.65                |        |
| Nitrate as Nitrogen           | mg/L     |        | 1.3                  | U      |      | NS                     |      |      | 1.3                    | U       |           | 1.3                   | U       |         | 1.3                   | U      |      | 0.5                 | U            |        | 0.5                 | 5 U    |          | 0.5                 | U      |
| Ferrous Iron                  | mg/L     |        | 0                    |        |      | 0                      |      |      | 5                      |         |           | 5.5                   |         | 1       | 2.5                   |        |      | 5                   |              |        | 3.5                 | 5      |          | 2.5                 |        |
| Sulfate                       | mg/L     |        | 150                  |        |      | NS                     |      |      | 89                     |         |           | 57                    |         |         | 61                    |        |      | 32                  |              |        | 27                  | 7      |          | 31                  |        |
| Carbon Dioxide                | mg/L     |        | 61.3                 |        |      | NS                     |      |      | 154                    |         |           | 204                   |         |         | 162                   |        |      | 245                 |              |        | 193                 | 3      |          | 219                 |        |
| Hydrogen                      | nM       |        | 1.5                  | J      |      | NS                     |      |      | 7.3                    |         |           | 2                     |         |         | 0.75                  | J      |      | 4.4                 |              |        | 0.95                | 5 J    |          | 1.4                 | j      |
| Dissolved Methane             | mg/L     |        | 0.44                 |        |      | NS                     |      |      | - 1                    |         |           | 3                     |         |         | 3.2                   |        |      | 5.6                 |              |        | 7.6                 | 5      |          | 8.4                 |        |
| Methane well head             | ppm      |        | 0                    |        |      | 530                    |      |      | 320                    |         |           | 15                    |         |         | 165                   |        |      | 180                 |              |        | (                   | )      |          | 240                 |        |
| DHC <sup>3</sup>              | cells/mL |        | 6.5E + 0             |        |      | NS                     |      |      | NS                     |         |           | NS                    |         |         | 5.9E+4                |        |      | NS                  |              |        | 6.8E+4              | ļ      |          | 1.0E+4              |        |
| S143A                         |          |        |                      |        |      |                        |      |      |                        |         |           |                       |         |         |                       |        |      |                     |              |        |                     |        |          |                     |        |
| TOC1                          | mg/L     |        | 1.3                  |        |      | 56                     | В,^  |      | 97                     |         |           | 110                   |         |         | 71                    |        |      | 4.1                 |              |        | 2.9                 | )      |          | 2.6                 |        |
| Dissolved Oxygen <sup>2</sup> | mg/L     |        | 0.7                  |        |      | 0.84                   |      |      | 0.25                   |         |           | 0.33                  |         |         | 0.47                  |        |      | 2.7                 |              |        | 0.72                | 2      |          | 0.6                 |        |
| Nitrate as Nitrogen           | mg/L     |        | 1.3                  | U      |      | NS                     |      |      | 1.3                    | U       | <b>†</b>  | 1.3                   | U       | 1       | 0.5                   |        |      | 0.5                 |              | 1      | 0.5                 |        | <b>T</b> | 0.5                 |        |
| Ferrous Iron                  | mg/L     |        | 0                    |        |      | 1                      |      |      | 3                      |         |           | 5                     |         |         | 4                     |        |      | 4                   |              |        | 3.5                 |        |          | 2                   |        |
| Sulfate                       | mg/L     |        | 160                  |        |      | NS                     |      |      | 5                      | U       |           | 5                     | U       |         | 1.8                   | U      |      | 54                  |              |        | 44                  | 1      |          | 85                  |        |
| Carbon Dioxide                | mg/L     |        | 28.7                 |        |      | NS                     |      |      | 145                    |         |           | 14.1                  |         |         | 105                   |        |      | 90.4                |              |        | 178                 | 3      |          | 140                 |        |
| Hydrogen                      | nM       |        | 1.6                  | J      |      | NS                     |      |      | 3.9                    |         |           | 8.2                   |         |         | 2.8                   |        |      | 4                   |              |        | 1                   | J      |          | 1                   | J      |
| Dissolved Methane             | mg/L     |        | 0.0035               | J      |      | NS                     |      |      | 0.37                   |         |           | 7.3                   |         |         | 9.7                   | '      |      | 8                   |              |        | Ç                   | }      |          | 12                  |        |
| Methane well head             | ppm      |        | 0                    |        |      | 115                    |      |      | 105                    |         |           | 1700                  |         |         | 15000                 | 1      |      | 22250               |              |        | 2900                | )      |          | 85                  |        |
| DHC <sup>3</sup>              | cells/mL |        | 4.4E + 0             |        |      | NS                     |      |      | NS                     |         |           | NS                    |         |         | 6.5E+4                |        |      | NS                  |              |        | 6.2E+3              | 3      |          | 1.7E+4              |        |
| S160A                         |          |        |                      |        |      |                        |      |      |                        |         |           |                       |         |         |                       |        |      |                     |              |        |                     |        |          |                     |        |
| TOC <sup>1</sup>              | mg/L     |        | 1                    | U      |      | 57                     |      |      | 6.7                    |         |           | 4.2                   |         |         | 4.4                   |        |      | 4.4                 |              |        | 3.2                 | 2      |          | 3.5                 |        |
| Dissolved Oxygen <sup>2</sup> | mg/L     |        | 0.3                  |        |      | 1.98                   |      |      | 0.4                    |         |           | 0.43                  |         |         | 0.51                  |        |      | 2.36                |              |        | 0.75                | 5      |          | 0.68                | -      |
| Nitrate as Nitrogen           | mg/L     |        | 1.3                  |        |      | NS                     |      |      | 1.3                    | U       |           | 1.3                   | U       |         | 0.88                  |        |      | 0.5                 |              |        | 0.5                 |        |          | 0.5                 |        |
| Ferrous Iron                  | mg/L     |        | 0                    |        |      | 1.5                    |      |      | 4                      |         | <b>†</b>  | 4                     |         |         | 3                     |        |      | 2.5                 |              |        |                     | 1      | <b>†</b> | 2.5                 |        |
| Sulfate                       | mg/L     |        | 110                  |        |      | NS                     |      |      | 130                    |         |           | 160                   |         |         | 160                   | ı      |      | 130                 |              |        | 96                  | 5      |          | 95                  |        |
| Carbon Dioxide                | mg/L     |        | 71.4                 |        |      | NS                     |      |      | 75.9                   |         |           | 132                   |         |         | 123                   |        |      | 178                 |              |        | 188                 | 3      |          | 271                 |        |
| Hydrogen                      | nM       |        | 1.7                  | J      |      | NS                     |      |      | 1.6                    | J       |           | 0.92                  | J       |         | 0.92                  | J      |      | 2.6                 |              |        | 1                   | J      |          | 1.2                 | J      |
| Dissolved Methane             | mg/L     |        | 4                    |        |      | NS                     |      |      | 1                      |         |           | 2.6                   |         |         | 2.2                   |        |      | 4.2                 |              |        | 6.9                 | )      |          | 9.2                 |        |
| Methane well head             | ppm      |        | 120                  |        |      | 3000                   |      |      | 600                    |         |           | 0                     |         |         | 870                   |        |      | 0                   |              |        | (                   | )      |          | 0                   |        |
| DHC <sup>3</sup>              | cells/mL |        | 2.7E+1               |        |      | NS                     |      |      | NS                     |         |           | NS                    |         |         | 1.0E+4                |        |      | NS                  |              |        | 6.0E+3              | 3      |          | 4.7E+3              |        |
| ,                             |          |        |                      |        |      |                        |      |      | Mid-ran                | ige TCE | Wells Sta | tistics (S            | 141A, S | 43A, S1 | 60A)                  |        |      |                     |              |        |                     |        |          |                     |        |
|                               |          | MIN    | MEDIAN               | MAX    | MIN  | MEDIAN                 | MAX  | MIN  | MEDIAN                 | MAX     | MIN       | MEDIAN                | MAX     | MIN     | MEDIAN                | MAX    | MIN  | MEDIAN              | MAX          | MIN    | MEDIA               | XAM P  | MIN      | MEDIAN              | MAX    |
| TOC1                          | mg/L     | 1      | 1.3                  | 1.7    | 40   | 56                     | 57   | 6.7  | 9.7                    | 97      | 4.2       | 12                    | 110     | 4.4     | 9.4                   | 71     | 4.1  | 4.4                 | 7.1          | 2.9    | 3.2                 | 4.7    | 2.6      | 3.5                 | 4.2    |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.3    | 0.3                  | 0.7    | 0.84 | 0.97                   | 1.98 | 0.25 | 0.4                    | 0.53    | 0.33      | 0.43                  | 0.45    | 0.47    | 0.49                  | 0.51   | 2.07 | 2.36                | 2.7          | 0.65   | 0.72                | 0.75   | 0.6      | 0.65                | 0.68   |
| Nitrate as Nitrogen           | mg/L     | 1.3    | 1.3                  | 1.3    | 0    | NA                     | 0    | 1.3  | 1.3                    | 1.3     | 1.3       | 1.3                   | 1.3     | 0.5     | 0.88                  | 1.3    | 0.5  | 0.5                 | 0.5          | 0.5    | 0.5                 | 0.5    | 0.5      | 0.5                 | 0.5    |
| Ferrous Iron                  | mg/L     | 0      | 0                    | 0      | 0    | 1                      | 1.5  | 3    | 4                      | 5       | 4         | 5                     | 5.5     | 2.5     | 3                     | 4      | 2.5  | 4                   | 5            | 3.5    | 3.5                 | 4      | 2        | 2.5                 | 2.5    |
| Sulfate                       | mg/L     | 110    | 150                  | 160    | 0    | NA                     | 0    | 5    | 89                     | 130     | 5         | 57                    | 160     | 1.8     | 61                    | 160    | 32   | 54                  | 130          | 27     | 44                  | 96     | 31       | 85                  | 95     |
| Carbon Dioxide                | mg/L     | 28.7   | 61.3                 | 71.4   | 0    | NA                     | 0    | 75.9 | 145                    | 154     | 14.1      | 132                   | 204     | 105     | 123                   | 162    | 90.4 | 178                 | 245          | 178    | 188                 | 193    | 140      | 219                 | 271    |
| Hydrogen                      | nM       | 1.5    | 1.6                  | 1.7    | 0    | NA                     | 0    | 1.6  | 3.9                    | 7.3     | 0.92      | 2                     | 8.2     | 0.75    | 0.92                  | 2.8    | 2.6  | 4                   | 4.4          | 0.95   | 1                   | 1      | 1        | 1.2                 | 1.4    |
| Dissolved Methane             | mg/L     | 0.0035 | 0.44                 | 4      | 0    | NA                     | 0    | 0.37 | 1                      | 1       | 2.6       | 3                     | 7.3     | 2.2     | 3.2                   | 9.7    | 4.2  | 5.6                 | 8            | 6.9    | 7.6                 | 9      | 8.4      | 9.2                 | 12     |
| Methane well head             | ppm      | 0      | 0.003                | 120    | 115  | 530                    | 3000 | 105  | 320                    | 600     | 0         | 15                    | 1700    | 165     | 870                   | 15000  | 0    | 180                 | 22250        | 0      | 0                   | 2900   | 0        | 85                  | 240    |
|                               | cells/ml | 4.4E+0 | 6.5E+0               | 2.7E+1 | NA   | NA                     | NA   | NA   | NA                     | NA      | NA        | NA                    | NA      | 1.0E+4  | 5.9E+4                | 6.5E+4 | NA   | NA                  | NA           | 6.0E+3 | 6.2E+3              | 6.8E+4 | 4.7E+3   | 1.0E+4              | 1.7E+4 |
| DHC <sup>3</sup>              |          | 4.4E+0 |                      |        |      |                        |      |      |                        |         | NA        |                       |         | +       | +                     |        | NA   |                     | <del> </del> |        | 6.2E+3              | 6.8E+4 | 4.7E+3   |                     |        |



|                               | Units    | 14-16 Sep. 2020<br>Baseline | 10-20 Nov. 2020<br>Injection | 15-18 Dec. 2020<br>Month 1 (30 Days) | 18-20 Jan. 2021<br>Month 2 (60 Days) | 15-17 Feb. 2021<br>Month 3 (90 Days) | 17-19 May 2021<br>Q2 (180 Days) | 17-19 Aug. 2021<br>Q3 (270 Days) | 8-10 Nov. 2021<br>Q4 (360 Days) |
|-------------------------------|----------|-----------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------------|---------------------------------|
| S138A                         |          |                             |                              |                                      |                                      |                                      |                                 |                                  |                                 |
| TOC'                          | mg/L     | 2.3                         | 490                          | 94                                   | 74                                   | 43                                   | 40                              | 41                               | 18                              |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.2                         | 0.78                         | 0.25                                 | 0.23                                 | 0.41                                 | 1.92                            | 0.55                             | 0.61                            |
| Nitrate as Nitrogen           | mg/L     | 0.25 U                      | NS                           | 0.1 U                                | 1.3 U                                | 0.024 U                              | 0.1 U                           | 0.5 U                            | 0.5 U                           |
| Ferrous Iron                  | mg/L     | 1.5                         | 3                            | 1                                    | 0                                    | 0.5                                  | 1                               | 1                                | 0.5                             |
| Sulfate                       | mg/L     | 160                         | NS                           | 1                                    | 5 U                                  | 1.4                                  | 2.3                             | 4.5 J                            | 1.9 J                           |
| Carbon Dioxide                | mg/L     | 20                          | NS                           | 102                                  | 5.62                                 | 44.7                                 | 56                              | 85.1                             | 84.7                            |
| Hydrogen                      | nM       | 0.61 J                      | NS                           | 210                                  | 59                                   | 10                                   | 3.9                             | 2                                | 2.5                             |
| Dissolved Methane             | mg/L     | 0.56                        | NS                           | 3.4                                  | 2.6                                  | 1.6                                  | 4.5                             | 6.3                              | 5.6                             |
| Methane well head             | ppm      | 0                           | 440                          | 230                                  | 22250                                | 4400                                 | 92500                           | 34000                            | 11250                           |
| DHC <sup>3</sup>              | cells/mL | 4.7E+3                      | NS                           | NS                                   | NS                                   | 4.2E+5                               | NS                              | 7.4E+5                           | 1.2E+6                          |
| \$140A                        |          |                             |                              |                                      |                                      |                                      |                                 |                                  |                                 |
| TOC1                          | mg/L     | 1.9                         | 120                          | 45 F1                                | 3.5                                  | 1.2                                  | 2.3                             | 2.4                              | 2.5                             |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.2                         | 1.15                         | 0.12                                 | 0.27                                 | 0.37                                 | 1.94                            | 0.62                             | 0.7                             |
| Nitrate as Nitrogen           | mg/L     | 1.3 U                       | NS                           | 0.1 U                                | 1.3 U                                | 0.024 U                              | 0.5 U                           | 0.5 U                            | 0.5 U                           |
| Ferrous Iron                  | mg/L     | 1                           | 2.5                          | 0.5                                  | 1                                    | 1.5                                  | 1.5                             | 1                                | 0.5                             |
| Sulfate                       | mg/L     | 170                         | NS                           | 73                                   | 130                                  | 150                                  | 140                             | 94                               | 79                              |
| Carbon Dioxide                | mg/L     | 22.8                        | NS                           | 60.6                                 | 30.9                                 | 29.4                                 | 27                              | 30.8                             | 40.1                            |
| Hydrogen                      | nM       | 0.52 J                      | NS                           | 0.93 J                               | 0.71 J                               | 5.4                                  | 4.6                             | 1 J                              | 1.4 J                           |
| Dissolved Methane             | mg/L     | 0.25                        | NS                           | 1.6                                  | 0.98                                 | 0.88                                 | 0.52                            | 0.97                             | 0.89                            |
| Methane well head             | ppm      | 195                         | 440                          | 4500                                 | 2900                                 | 1600                                 | 1300                            | 2550                             | 2800                            |
| DHC <sup>3</sup>              | cells/mL | 3.0E+1                      | NS                           | NS                                   | NS                                   | 1.7E+5                               | NS                              | 1.8E+5                           | 2.5E+5                          |
| S146A                         |          |                             |                              |                                      |                                      |                                      |                                 |                                  |                                 |
| TOC1                          | mg/L     | 1 U                         | 170                          | 110                                  | 43                                   | 33                                   | 2.5                             | 1.2                              | 0.86 J                          |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.3                         | 1.23                         | 0.15                                 | 0.27                                 | 0.40                                 | 1.97                            | 0.61                             | 0.69                            |
| Nitrate as Nitrogen           | mg/L     | 0.25 U                      | NS                           | 0.25 U                               | 0.25 U                               | 0.88 U                               | 0.1 U                           | 0.5 U                            | 0.5 U                           |
| Ferrous Iron                  | mg/L     | 0.5                         | 3.5                          | 1                                    | 0.5                                  | 2.5                                  | 0.5                             | 1.5                              | 1.5                             |
| Sulfate                       | mg/L     | 110                         | NS                           | 4.3                                  | 39                                   | 61                                   | 77                              | 110                              | 110                             |
| Carbon Dioxide                | mg/L     | 22.6                        | NS                           | 45                                   | 2.81                                 | 28.9                                 | 22.9                            | 20.9                             | 28.8                            |
| Hydrogen                      | nM       | 1.8 J                       | NS                           | 120                                  | 21                                   | 2.6                                  | 4                               | 0.86 J                           | 1.4 J                           |
| Dissolved Methane             | mg/L     | 1.3                         | NS                           | 1.1                                  | 0.5                                  | 0.26                                 | 0.19                            | 0.25                             | 0.42                            |
| Methane well head             | ppm      | 190                         | 540                          | 470                                  | 540                                  | 1250                                 | 500                             | 115                              | 0                               |
| DHC <sup>3</sup>              | cells/mL | 3.4E+2                      | NS                           | NS                                   | NS                                   | 1.7E+4                               |                                 | 7.4E+4                           | 1.6E+4                          |
| S158A                         |          |                             |                              |                                      |                                      |                                      |                                 |                                  |                                 |
| TOC1                          | mg/L     | 2.4                         | 240                          | 120                                  | 130                                  | 130                                  | 150                             | 210                              | 130                             |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.3                         | 1.64                         | 0.15                                 | 0.27                                 | 0.40                                 | 2.01                            | 0.69                             | 0.66                            |
| Nitrate as Nitrogen           | mg/L     | 1.3 U                       | NS                           | 1.3 U                                | 1.3 U                                | 0.024 U                              | 0.5 U                           | 0.5 U                            | 0.5 U                           |
| Ferrous Iron                  | mg/L     | 0                           | 2                            | 3                                    | 4                                    | 5                                    | 7                               | 5.5                              | 2                               |
| Sulfate                       | mg/L     | 180                         | NS                           | 40                                   | 34                                   | 2.3                                  | 3.5 J                           | 1.8 U                            | 1.9 J                           |
| Carbon Dioxide                | mg/L     | 24.8                        | NS                           | 110                                  | 11.5                                 | 136                                  | 211                             | 338                              | 399                             |
| Hydrogen                      | nM       | 53                          | NS                           | 64                                   | 18                                   | 9.6                                  | 14                              | 5                                | 5.2                             |
| Dissolved Methane             | mg/L     | 0.015                       | NS                           | 0.015                                | 0.036                                | 0.46                                 | 3.3                             | 6.1                              | 3.7                             |
| Methane well head             | ppm      | 0                           | 410                          | 400                                  | 15                                   | 0                                    | 410                             | 13250                            | 0                               |
| DHC <sup>3</sup>              | cells/mL | 2.2E+0                      | NS                           | NS                                   | NS                                   | 2.0E+4                               | NS                              | 5.7E+5                           | 5.1E+5                          |



|                               | Units    |        | 16 Sep. 2<br>Baseline |        |      | 20 Nov. 2<br>Injection |      |       | 18 Dec. 2<br>h 1 (30 I |            |          | 20 Jan. 2<br>:h 2 (60 I |          |         | 17 Feb. :<br>th 3 (90 |        |      | 19 May 2<br>(180 Da |       |        | 19 Aug. 2<br>1 (270 Da |        |        | 0 Nov. 2<br>(360 Da |        |
|-------------------------------|----------|--------|-----------------------|--------|------|------------------------|------|-------|------------------------|------------|----------|-------------------------|----------|---------|-----------------------|--------|------|---------------------|-------|--------|------------------------|--------|--------|---------------------|--------|
|                               |          |        |                       |        |      |                        |      |       | -ligh-TCI              | E wells St | atistics | S138A,                  | S140A, S | 146A, S | 158A)                 |        |      |                     |       |        |                        |        |        |                     |        |
|                               |          | MIN    | MEDIAN                | MAX    | MIN  | MEDIAN                 | MAX  | MIN   | MEDIAN                 | MAX        | MIN      | MEDIAN                  | MAX      | MIN     | MEDIAN                | MAX    | MIN  | MEDIAN              | MAX   | MIN    | MEDIAN                 | MAX    | MIN    | MEDIAN              | MAX    |
| TOC1                          | mg/L     | 1      | 2.1                   | 2.4    | 120  | 205                    | 490  | 45    | 102                    | 120        | 3.5      | 58.5                    | 130      | 1.2     | 38                    | 130    | 2.3  | 21.25               | 150   | 1.2    | 21.7                   | 210    | 0.86   | 10.25               | 130    |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.2    | 0.25                  | 0.3    | 0.78 | 1.19                   | 1.64 | 0.12  | 0.15                   | 0.25       | 0.23     | 0.27                    | 0.27     | 0.37    | 0.4                   | 0.41   | 1.92 | 1.955               | 2.01  | 0.55   | 0.615                  | 0.69   | 0.61   | 0.675               | 0.7    |
| Nitrate as Nitrogen           | mg/L     | 0.25   | 0.775                 | 1.3    | 0    | NA                     | 0    | 0.1   | 0.175                  | 1.3        | 0.25     | 1.3                     | 1.3      | 0.024   | 0.024                 | 0.88   | 0.1  | 0.3                 | 0.5   | 0.5    | 0.5                    | 0.5    | 0.5    | 0.5                 | 0.5    |
| Ferrous Iron                  | mg/L     | 0      | 0.75                  | 1.5    | 2    | 2.75                   | 3.5  | 0.5   | 1                      | 3          | 0        | 0.75                    | 4        | 0.5     | 2                     | 5      | 0.5  | 1.25                | 7     | 1      | 1.25                   | 5.5    | 0.5    | 1                   | 2      |
| Sulfate                       | mg/L     | 110    | 165                   | 180    | 0    | NA                     | 0    | 1     | 22.15                  | 73         | 5        | 36.5                    | 130      | 1.4     | 31.65                 | 150    | 2.3  | 40.25               | 140   | 1.8    | 49.25                  | 110    | 1.9    | 40.45               | 110    |
| Carbon Dioxide                | mg/L     | 20     | 22.7                  | 24.8   | 0    | NA                     | 0    | 45    | 81.3                   | 110        | 2.81     | 8.56                    | 30.9     | 28.9    | 37.05                 | 136    | 22.9 | 41.5                | 211   | 20.9   | 57.95                  | 338    | 28.8   | 62.4                | 399    |
| Hydrogen                      | nM       | 0.52   | 1.205                 | 53     | 0    | NA                     | 0    | 0.93  | 92                     | 210        | 0.71     | 19.5                    | 59       | 2.6     | 7.5                   | 10     | 3.9  | 4.3                 | 14    | 0.86   | 1.5                    | 5      | 1.4    | 1.95                | 5.2    |
| Dissolved Methane             | mg/L     | 0.015  | 0.41                  | 1.3    | 0    | NA                     | 0    | 0.015 | 1.35                   | 3.4        | 0.04     | 0.74                    | 2.6      | 0.26    | 0.67                  | 1.6    | 0.19 | 1.91                | 4.5   | 0.25   | 3.54                   | 6.3    | 0.42   | 2.30                | 5.6    |
| Methane well head             | ppm      | 0      | 95                    | 195    | 410  | 440.0                  | 540  | 230   | 435                    | 4500       | 15       | 1720                    | 22250    | 0       | 1425                  | 4400   | 410  | 900                 | 92500 | 115    | 7900                   | 34000  | 0      | 1400                | 11250  |
| DHC <sup>3</sup>              | cells/mL | 2.2E+0 | 1.8E+2                | 4.7E+3 | NA   | NA                     | NA   | NA    | NA                     | NA         | NA       | NA                      | NA       | 1.7E+4  | 9.3E+4                | 4.2E+5 | NA   | NA                  | NA    | 7.4E+4 | 3.8E+5                 | 7.4E+5 | 1.6E+4 | 3.8E+5              | 1.2E+6 |

|                               |          |        |        |        |      |        |      |       | Su     | mmary: | All React | lve Zone | Wells St | atistics |        |        |      |        |        |        |        |        |        |        |        |
|-------------------------------|----------|--------|--------|--------|------|--------|------|-------|--------|--------|-----------|----------|----------|----------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|
|                               |          | MIN    | MEDIAN | MAX    | MIN  | MEDIAN | MAX  | MIN   | MEDIAN | MAX    | MIN       | MEDIAN   | MAX      | MIN      | MEDIAN | I MAX  | MIN  | MEDIAN | MAX    | MIN    | MEDIAN | MAX    | MIN    | MEDIAN | MAX    |
|                               |          |        |        |        |      |        |      |       |        |        |           |          |          |          |        |        |      |        |        |        |        |        |        |        |        |
| TOC                           | mg/L     | 1      | 1.75   | 2.4    | 40   | 180    | 580  | 6.7   | 95.5   | 410    | 3.5       | 71       | 510      | 1.2      | 27.5   | 460    | 2.3  | 5.05   | 150    | 1.2    | 4.35   | 210    | 0.86   | 3.85   | 130    |
| Dissolved Oxygen <sup>2</sup> | mg/L     | 0.2    | 0.3    | 0.7    | 0.78 | 1.19   | 2.18 | 0.12  | 0.25   | 0.57   | 0.22      | 0.295    | 0.45     | 0.37     | 0.47   | 0.54   | 1.92 | 2.17   | 2.7    | 0.55   | 0.67   | 0.75   | 0.59   | 0.66   | 0.84   |
| Nitrate as Nitrogen           | mg/L     | 0.25   | 1.3    | 1.3    | 0    | NA     | 0    | 0.1   | 1.3    | 1.3    | 0.25      | 1.3      | 1.3      | 0.024    | 0.5    | 1.3    | 0.1  | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    |
| Ferrous Iron                  | mg/L     | 0      | 0      | 2      | 0    | 2.25   | 4    | 0.5   | 2.5    | 5      | 0         | 3.25     | 5.5      | 0.5      | 2.5    | 5      | 0.5  | 3.75   | 7      | 1      | 3.75   | 5.5    | 0.5    | 2      | 5.5    |
| Sulfate                       | mg/L     | 110    | 165    | 190    | 0    | NA     | 0    | 1     | 5.9    | 130    | 1.6       | 21.4     | 160      | 0.9      | 5.65   | 160    | 1.8  | 43     | 140    | 1.8    | 35.5   | 110    | 1.8    | 62.5   | 120    |
| Carbon Dioxide                | mg/L     | 20     | 27     | 78.7   | 0    | NA     | 0    | 23    | 99.5   | 284    | 2.81      | 28.9     | 347      | 28.9     | 105    | 285    | 22.9 | 99.2   | 245    | 6.83   | 151    | 338    | 28.8   | 147.5  | 399    |
| Hydrogen                      | nM       | 0.52   | 1.65   | 53     | 0    | NA     | 0    | 0.83  | 5.6    | 210    | 0.71      | 3.3      | 59       | 0.75     | 2.7    | 10     | 2.2  | 4.1    | 14     | 0.86   | 1      | 15     | 0.9    | 1.4    | 5.2    |
| Dissolved Methane             | mg/L     | 0.0035 | 0.5    | 8.1    | 0    | NA     | 0    | 0.015 | 1.05   | 8.7    | 0.036     | 2.8      | 14       | 0.26     | 2.7    | 18     | 0.19 | 5.05   | 9.1    | 0.25   | 6.65   | 9.5    | 0.42   | 6.6    | 12     |
| Methane well head             | ppm      | 0      | 0.0015 | 195    | 115  | 440    | 3000 | 105   | 435    | 4500   | 0         | 2300     | 50250    | 0        | 3000   | 50250  | 0    | 8900   | 100500 | 0      | 6150   | 50250  | 0      | 455    | 50250  |
| DHC3                          | cells/mL | 1.4E+0 | 2.9E+1 | 4.7E+3 | NA   | NA     | NA.  | NA    | NA     | NA     | NA        | NA       | NA       | 1.0E+4   | 6.2E+4 | 4.2E+5 | NA   | NA     | NA.    | 1.9E+3 | 7.1E+4 | 7.4E+5 | 2.0E+3 | 1.8E+4 | 1.2E+6 |

### Notes

- 1. Total Organic Carbon (TOC): Multiple samples collected for injection monitoring event; table reports the highest TOC result. Complete TOC results reported in Table 6 and Appendix H (figures H-1-0 through H-1-13).
- 2. Dissolved Oxygen result from 15-16 March 2021 reported instead of 15-1& February 2021 results.
- 3. Dechlorinating Bacteria Dehalococcoides spp. (DHC).
- 4. Not Sampled (NS).

### Qualifiers:

U - Non-Detect

- J Result between maximum detection limit and limit of quantification
- ^ Instrument related QC is outside acceptance limits
- B Compound was found in the blank sample



### TABLE 11 SUMMARY OF KEY EAB PHASE II RESULTS BY WELL SEPTEMBER 2020 – NOVEMBER 2021 SIGNETICS SITE

|                                                                                                                                                                      |              |                                                                           | Monitoring Locations in Reactive Zone                                       |                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Performance Parame                                                                                                                                                   | ter          | \$137A                                                                    | S139A                                                                       | S159A                                                                     |
| Wells relative to injection                                                                                                                                          | points:      | (~10 ft. d/g from SRS-SD injection 2)                                     | (~10 ft. u/g from SRS-SD injection 7)                                       | (10 ft. c/g from SRS-SD injection 4)                                      |
| Radius of Influence (F                                                                                                                                               | ROI)         |                                                                           |                                                                             |                                                                           |
| WL increase >0.5 ft de<br>(max WL increase in                                                                                                                        |              | unknown                                                                   | unknown                                                                     | WL increase (12)                                                          |
| Delivery Technique                                                                                                                                                   | s:           | TDIP                                                                      | TDIP                                                                        | TDIP                                                                      |
|                                                                                                                                                                      |              | 84 gal SRS-SD, 3.5 L TSI-DC, 75 lbs<br>NaHCO3, 4599 gal conditioned water | 84 gal SRS-SD, 3.5 L TSI-DC, 76.5 lbs<br>NaHCO3, 4599 gal conditioned water | 84 gal SRS-SD, 3.5 L TSI-DC, 78 lbs<br>NaHCO3, 4599 gal conditioned water |
| TOC Retention                                                                                                                                                        |              | 170 PSI                                                                   | 170 PSI                                                                     | 170 PSI                                                                   |
| Time in days TOC > 20<br>(max observed TOC in r                                                                                                                      |              | Thru 15-17 Feb. 2021<br>90 days (520)                                     | Thru 15-17 Feb. 2021<br>90 days (190)                                       | Approx. 8-10 Nov. 2021<br>360 days (580)                                  |
| Metals<br>Increase desired<br>(Sep 2020 baseline – Max –<br>Q4) in mg/L                                                                                              | Nov 2021     | Fe2+ increase (6-5.5-5.5)                                                 | Fe2 + sucrease (2-5,5-4.0)                                                  | FeZ+ instease (0-4.5-1)                                                   |
| Sulfate                                                                                                                                                              |              | Decreased followed by rebound at 270<br>days                              | Decreased followed by rebound at 180<br>days                                | Decrease                                                                  |
| Sulfate < 20 mg/L des<br>(Sep 2020 baseline – Reb<br>Nov 2021 Q4 in mg/                                                                                              | ound-        | (180 - 4.4 - 25 J)                                                        | (190 - 9 - 81)                                                              | (180-<1.8)                                                                |
| <b>Hydrogen</b><br>Approx. Production pe<br>(Hydrogen > 2 nM desi                                                                                                    |              | Dec 2020 - Ang 2021<br>(30 - 270 days)                                    | Sep 2020 - May 2021<br>(Baseline - 180 days)                                | )an 2021 - Nov 2021<br>(60 - 360 days)                                    |
| Methane<br>Production period<br>(Methane > 1.0 mg/L d                                                                                                                |              | Sep 2020 - Nov 2021<br>(Baseline - 360 days)                              | Sep 2020 - Nov 2023<br>(Baseline - 360 days)                                | Jan 2021 - Nov 2021<br>(60 - 360 days)                                    |
| DHC Microbe population i                                                                                                                                             | increase     | Moderate                                                                  | Moderate                                                                    | Low                                                                       |
| DHC > 1 x 10 <sup>4</sup> cells/mL o<br>(Sep 2020 baseline - Nov 20<br>cells/mL)                                                                                     |              | 6.21 x 10 <sup>2</sup> - 1.85 x10 <sup>4</sup>                            | 5.82 x 10 <sup>2</sup> - 2.36 x10 <sup>4</sup>                              | 1.4 x 10 <sup>0</sup> - 2.36 x10 <sup>3</sup>                             |
| VOCs<br>(ug/L)                                                                                                                                                       | TCE          | TCE reduction (17-1.2) (93%)                                              | TCE reduction followed by rebound at 60 days (17- 1.2-12.0 (29.4%)          | TEE reduction (140~, 33 )) (99.8%)                                        |
| Degradation: Order of<br>magnitude higher than<br>background desired,<br>followed by decline.<br>(Sep 2020 baseline - Max -<br>Nov 2021 Q4 in ug/L)<br>(% reduction) | cis-DCE      | cts-PCE decrease followed by<br>robound at 180 days (380-4-25)<br>(+3%)   | cis-DCE decrease followed by<br>rebound at 60 days (410-9-2000) (-<br>388%) | cs-DCE reduction (586-1.5) (99.7%)                                        |
| , to total edition                                                                                                                                                   | VC           | VC decrease followed by rebound at<br>360 days (38–23–130)                | VC decrease followed by rebound at<br>60 days (310–140–580)                 | VC reduction (5.3<.18) (96.6%                                             |
| Color Code:<br>Low parameter requires<br>attention                                                                                                                   | Ethene       | Ethene increase (1.1-210-210)                                             | Ethene increase (72-1500-610)                                               | Ethene increase (2.4-100-3.9)                                             |
| Medium - stall and/or<br>rebound in degradation; or<br>only slight improvement                                                                                       | Freon<br>113 | Freen 113 no change, but low baseline (<5 - <0.34)                        | Freon 113 reduction (17-<8.5)                                               | Freon (13 reduction (16.9-<17)                                            |
| tiigh - undergoing<br>dechlorination, or improved<br>and/or acceptable<br>concentration                                                                              | PCE          | PCE at acceptable concentration (<5 - <0.2)                               | PCE at acceptable concentration (<5 - <5)                                   | PCF at acceptable concentration (<.5 - < 0.1)                             |

See notes on page 3.

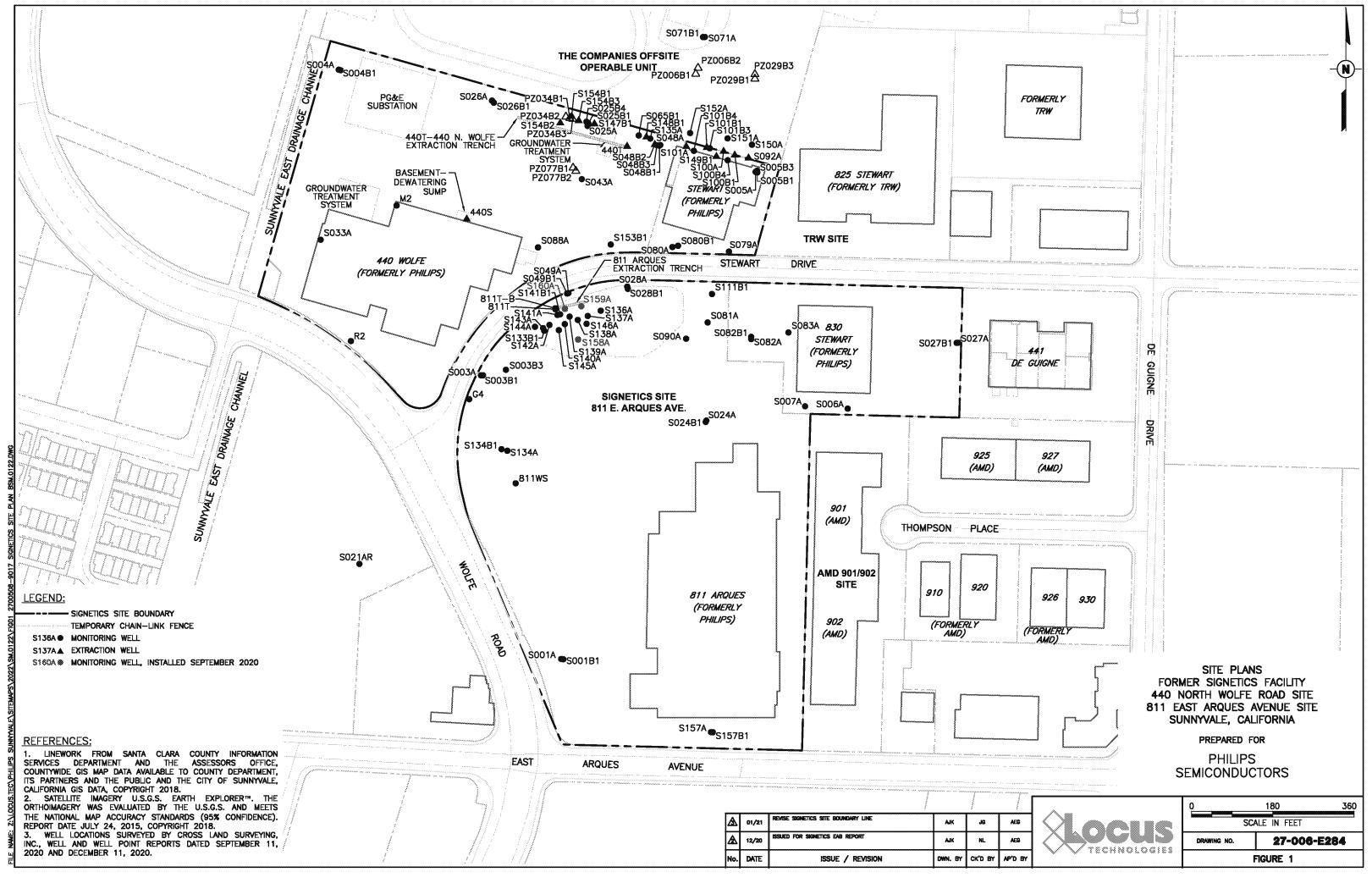


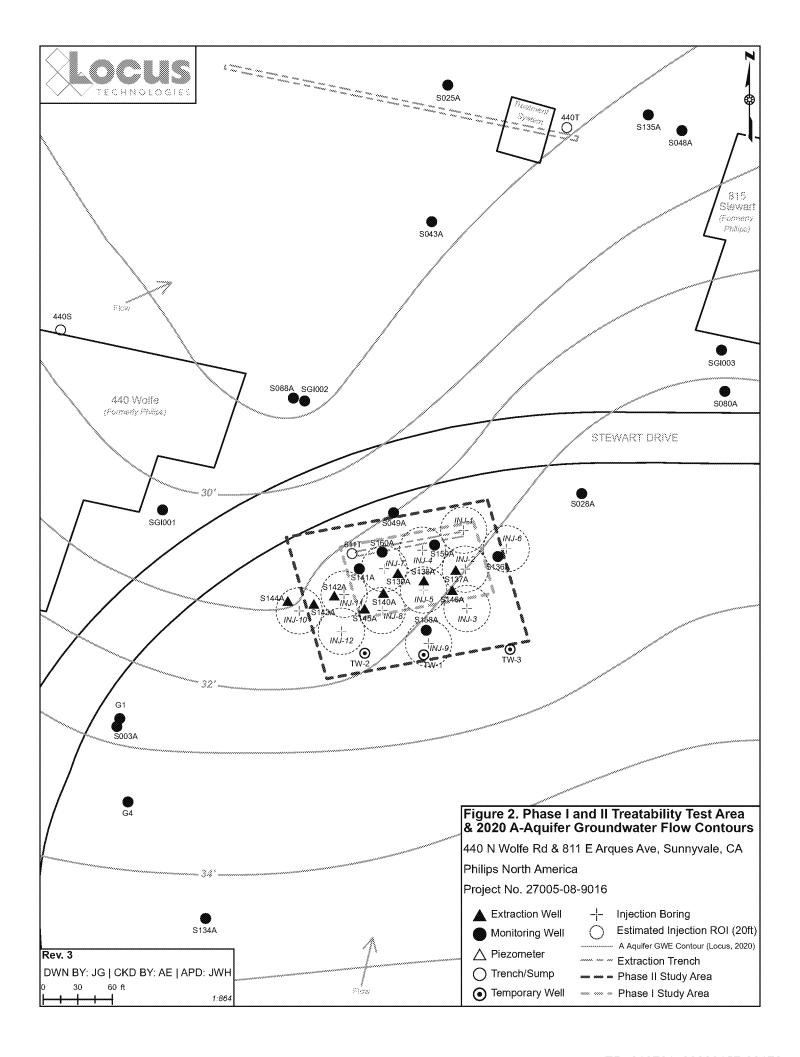
### TABLE 11 SUMMARY OF KEY EAB PHASE II RESULTS BY WELL SEPTEMBER 2020 – NOVEMBER 2021 SIGNETICS SITE

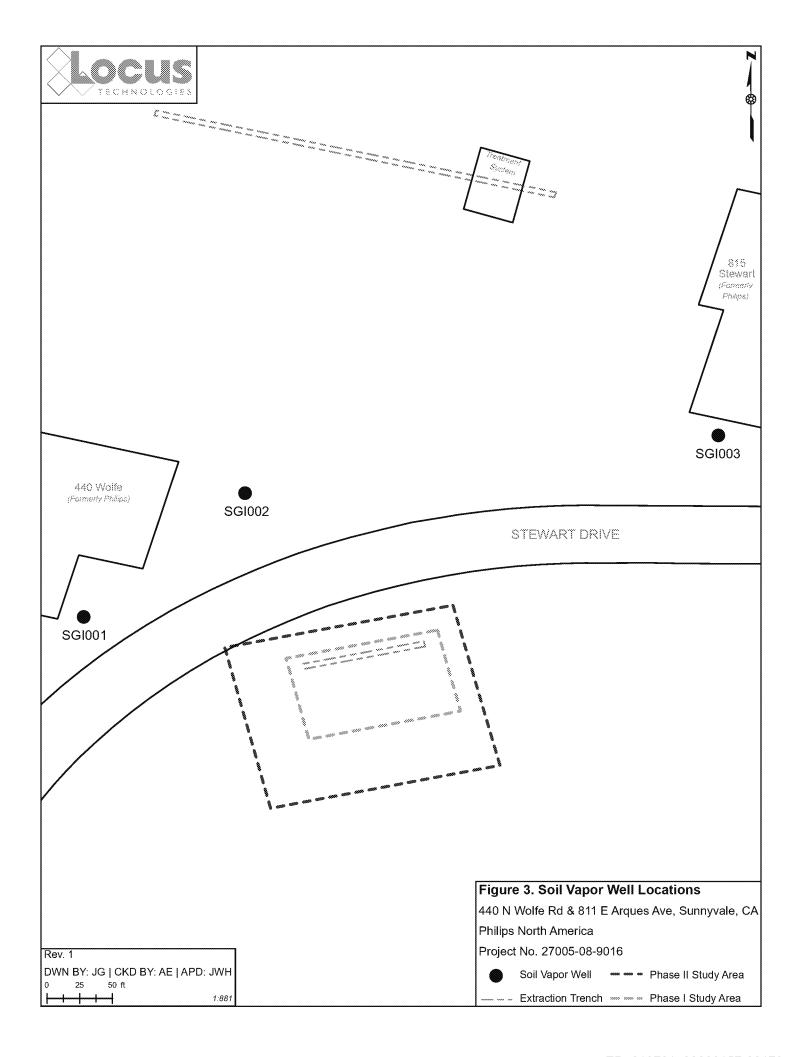
|                                                                                                                                                                      |              |                                                                             | Monitoring Locations in Reactive Zone                                       |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Performance Parame                                                                                                                                                   | ter          | S141A                                                                       | S143A                                                                       | S160A                                                                       |
| Wells relative to injection                                                                                                                                          | points:      | (~20 ft. d/g from SRS-SD injection 7)                                       | (12 ft. c/g from SRS-SD injection 10)                                       | (14 ft. d/g from SRS-SD injection 7)                                        |
| Radius of Influence (I                                                                                                                                               | ROI)         |                                                                             |                                                                             |                                                                             |
| WL increase >0.5 ft de<br>(max WL increase in                                                                                                                        |              | WL increase (3.5)                                                           | WL increase (1.25)                                                          | WL increase (8)                                                             |
| Delivery Technique                                                                                                                                                   | s:           | TDIP                                                                        | TDIP                                                                        | TDIP                                                                        |
|                                                                                                                                                                      |              | 84 gal SRS-SD, 3.5 L TSI-DC, 76.5 lbs<br>NaHCO3, 4599 gal conditioned water | 84 gal SRS-SD, 3.5 L TSI-DC, 75 lbs<br>NaHCO3, 4599 gal conditioned water   | 84 gal SRS-SD, 3.5 L TSI-DC, 76.5 lbs<br>NaHCO3, 4599 gal conditioned water |
| TOC Retention                                                                                                                                                        |              | 170 PSI                                                                     | 170 PSI                                                                     | 170 PSI                                                                     |
| Time in days TOC > 20<br>(max observed TOC in 1                                                                                                                      |              | Nov. 2020<br><7 days (<40)                                                  | Thru 17-19 May 2021<br>180 days (110)                                       | Nov. 2020<br><7 days (57)                                                   |
| Metals<br>Increase desired<br>(Sep 2020 baseline – Max –<br>Q4) in mg/L                                                                                              | Nov 2021     | Fe2+ increase (6-5.5-2.5)                                                   | Fe2 + sucrease (0-5.0-2.0)                                                  | Fe2+ #icrease (0-4.0-2.5)                                                   |
| Sulfate                                                                                                                                                              |              | Slight decrease                                                             | Decreased followed by rebound at 180<br>days                                | Slight decrease                                                             |
| Sulfate < 20 mg/L des<br>(Sep 2020 baseline – Reb<br>Nov 2021 Q4 in mg/                                                                                              | ound-        | (150 – 31)                                                                  | (160-<1.8 -85)                                                              | (110 - 95)                                                                  |
| <b>Hydrogen</b><br>Approx. Production pe<br>(Hydrogen > 2 nM des                                                                                                     |              | Dec 2020 – Jan 2021<br>(30 – 60 days)                                       | Dec 2020 - May 2021<br>(30 - 180 days)                                      | only during May 2021<br>(180 days)                                          |
| Methane<br>Production period<br>(Methane > 1.0 mg/L d                                                                                                                | esired)      | Jan 2021 - Nov 2021<br>(60 - 360 days)                                      | Jan 2621 – Nov 2021<br>(60 – 360 days)                                      | Sep 2020 – Nov 2021<br>(Baseline – 360 days)                                |
| DHC Microbe population                                                                                                                                               | ncrease      | Moderate                                                                    | Noderate                                                                    | Low                                                                         |
| DHC > 1 x 10 <sup>4</sup> cells/mL (<br>(Sep 2020 baseline - Nov 20<br>cells/mL)                                                                                     |              | 6.5 x 10 <sup>0</sup> - 1.00 x10 <sup>4</sup>                               | 4.4 x 10 <sup>0</sup> - 1.66 x10 <sup>4</sup>                               | 2.68 x 10 <sup>1</sup> - 4.66 x10 <sup>3</sup>                              |
| VOCs<br>(ug/L)                                                                                                                                                       | TCE          | TCF reduction followed by rebound at 90 days (1490–220–409) (71,49)         | TCE reduction followed by rebound at 180 days (649-1.3-9.7) (98.8%)         | TCE reduction followed by rebound at 90 days (500 ~ 10~160) (68,0%          |
| Degradation: Order of<br>magnitude higher than<br>background desired,<br>followed by decline.<br>(Sep 2020 baseline - Max -<br>Nov 2021 Q4 in ug/L)<br>(% reduction) | cis-DCE      | cis-DCE increase (560-620) (-11,7%)                                         | cis-DCE decrease followed by<br>refound at 180 days (590-4,3-24)<br>(95,9%) | cis-DCE decrease (1600-840) (47,5%)                                         |
|                                                                                                                                                                      | VC           | VC increase (25–100)                                                        | VC decrease followed by rebound at<br>180 day (<10-5.2-220)                 | VC decrease (300-95) (68,3%)                                                |
| Color Code:<br>Low parameter requires<br>attention                                                                                                                   | Ethene       | Ethene increase (8-679-190)                                                 | Ethene increase (<0.12-950-670)                                             | Ethene decrease (850 – 42)                                                  |
| ोलविधान - stall and/or<br>rebound in degradation; or<br>only slight improvement                                                                                      | Freon<br>113 | Freon 113 reduction (240-51) (78.8%)                                        | Freon i13 reduction (11<0.68)                                               | Freon 113 no change, but low<br>baseline (<25 - 3.8 J)                      |
| liigh - undergoing<br>dechlorination, or improved<br>and/or acceptable<br>concentration                                                                              | PCE          | PCE at acceptable concentration (<25 -<br>1.1 p                             | PCE at acceptable concentration (< 10 < 0.4)                                | PCF at acceptable concentration (<25 - < 2)                                 |

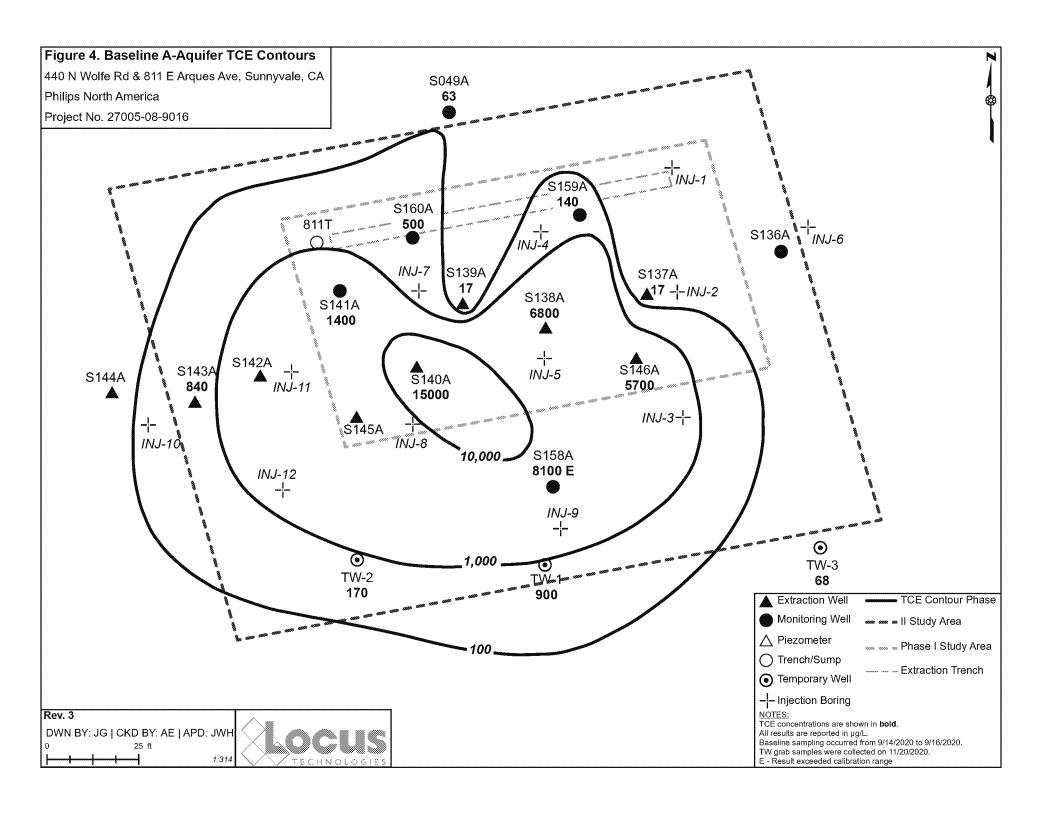
See notes on page 3.

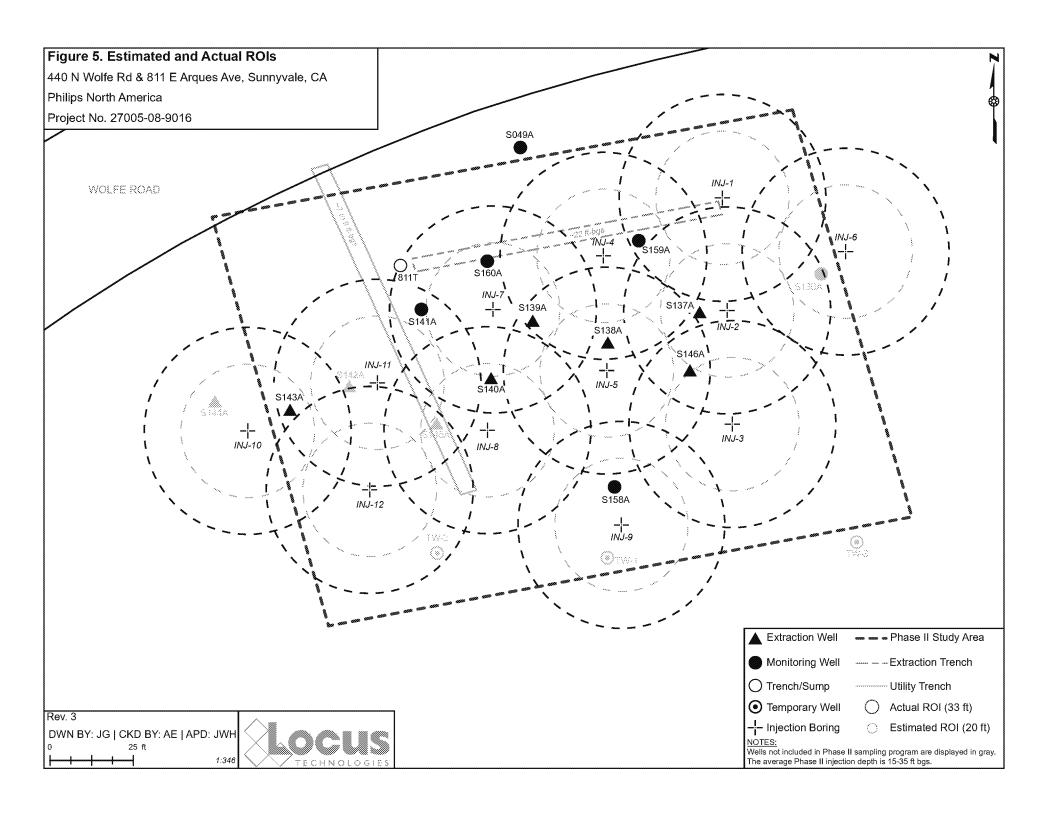


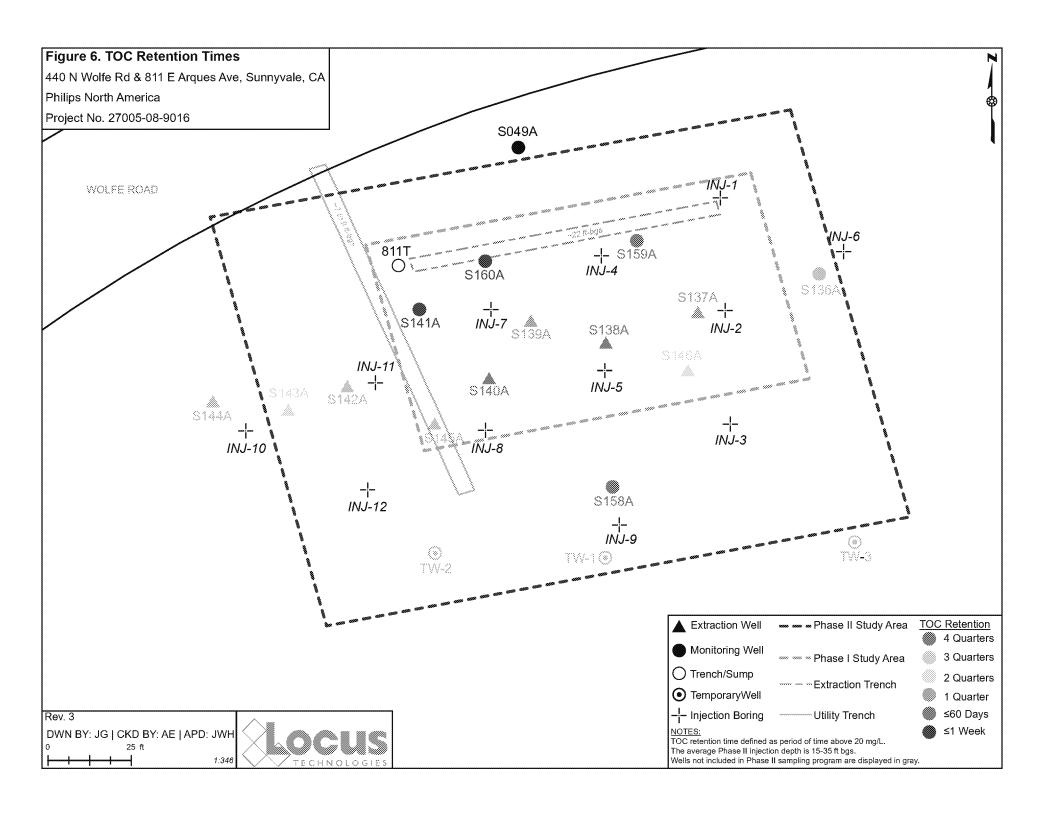

### TABLE 11 SUMMARY OF KEY EAB PHASE II RESULTS BY WELL SEPTEMBER 2020 – NOVEMBER 2021 SIGNETICS SITE

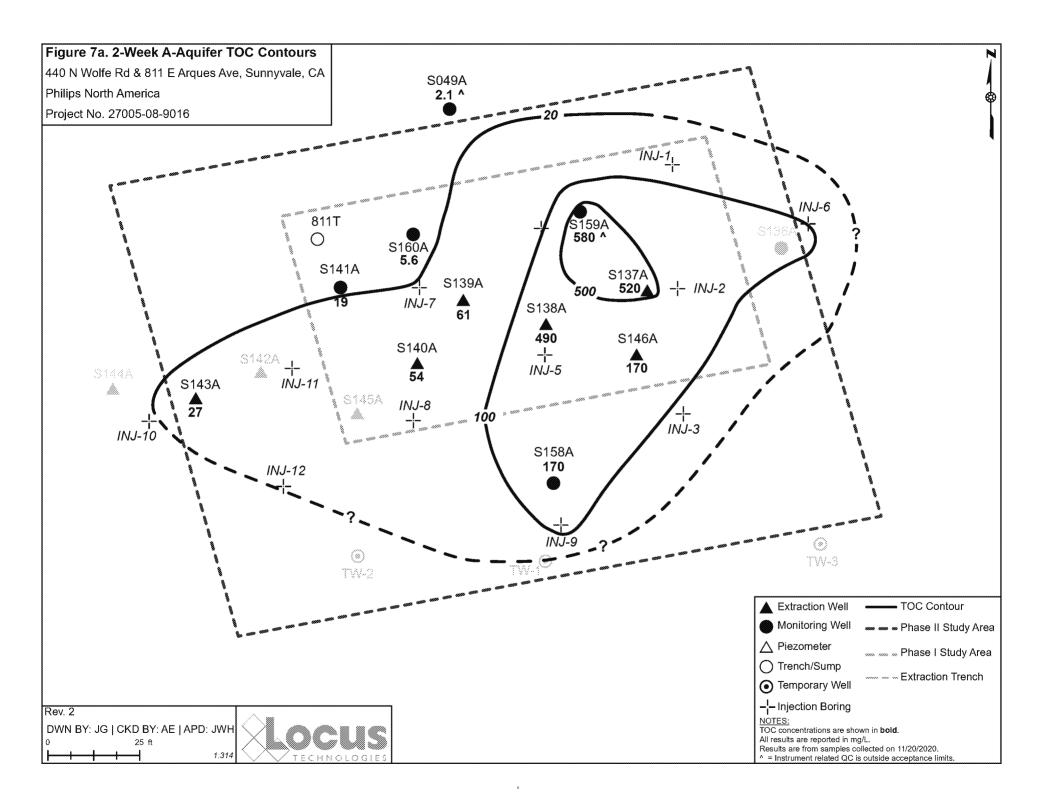

|                                                                                                                                                                      |              |                                                                                          | Monitoring Locatio                                                                                                                              | ns in Reactive Zone                                                                        |                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Performance Parame                                                                                                                                                   | ter          | \$138A                                                                                   | S140A                                                                                                                                           | S146A                                                                                      | S158A                                                                                                                 |
| Wells relative to injection                                                                                                                                          | points:      | (9 ft. d/g from SRS-SD injection<br>5) (Phase I reactive zone)                           | (15 ft. d/g from SRS-SD injection<br>8) (Phase I reactive zone)                                                                                 | (21 ft. d/g from SRS-SD injection<br>3) (Phase I reactive zone)                            | (12 ft. d/g from SRS-SD injection 9)                                                                                  |
| Radius of Influence (R<br>WL increase >0.5 ft des<br>(max WL increase in                                                                                             | sired        | Oscillating WL for first two hours,<br>then WL increase (5 ft)                           | WL increase (2.5)                                                                                                                               | WL increase (2.5)                                                                          | WL increase to 8 ft then<br>decreased and stabilized at 1 ft.                                                         |
| Delivery Technique:                                                                                                                                                  | <b>s</b> :   | TDIP  140 gal SRS-SD, 3.5 L TSI-DC, 78  lbs NaHCO3, 4599 gal  conditioned water  170 PSI | PAIP  84 gal SRS-SD, 3.5 L TSI-DC, 75  lbs NaHCO3, 4599 gal  conditioned water  150-170 PSI                                                     | PAIP  84 gal SRS-SD, 3.5 L TSI-DC, 75  lbs NaHCO3, 4599 gal  conditioned water  70-100 PSI | TDIP  84 gal SRS–SD, 3.5 L TSI–DC, 116.3 lbs NaHCO3, 6898 gal conditioned water 170 PSI                               |
| TOC Retention Time in days TOC > 20 (max observed TOC in r                                                                                                           |              | Approx. 8-19 Nov. 2921<br>360 days (490)                                                 | Thru 18-20 jan. 2021<br>60 days (120)                                                                                                           | Thro 17–19 May 2021<br>186 days (176)                                                      | Thru 8-16 Nov. 2021<br>360 days (240)                                                                                 |
| Metals<br>Increase desired<br>(Sep 2020 baseline – Max –<br>Q4) in mg/L                                                                                              | Nov 2021     | Fe2+ decrease (1.5-3.6-0.5)                                                              | Fe2+ decrease (1.0-2.5-0.5)                                                                                                                     | Fe2+ slight increase (0.5+3,5+1.5)                                                         | Fe2+ increase (0–7–2.0)                                                                                               |
| Sulfate                                                                                                                                                              |              | Decrease                                                                                 | Slight decrease                                                                                                                                 | Decreased followed by rebound at<br>60 days                                                | Decrease                                                                                                              |
| Sulfate < 20 mg/L des<br>(Sep 2020 baseline – Reb<br>Nov 2021 Q4 in mg/                                                                                              | ound-        | (160- 1.9 J)                                                                             | (170 - 79)                                                                                                                                      | (110- 4.3 - 110)                                                                           | (180-1.9 J)                                                                                                           |
| Hydrogen Approx. Production pe (Hydrogen > 2 nM desi                                                                                                                 |              | Dec 2020 - Nov 2021<br>(30 - 360 days)                                                   | Feb 2021 - May 2021<br>(90 - 180 days)                                                                                                          | Dec 2020 - May 2021<br>(30 - 160 days)                                                     | Sep 2020 - Nov 2021<br>(Baseline - 360 days)                                                                          |
| Methane Production period (Methane > 1.0 mg/L d                                                                                                                      | esired)      | Dec 2020 - Nov 2021<br>(30 - 360 days)                                                   | Only Dec 2020<br>(30 days)                                                                                                                      | Sep 2020 - Dec 2020<br>(Baseline - 30 days)                                                | May 2021 - Nov 2021<br>(180 - 360 days)                                                                               |
| DHC Microbe population i                                                                                                                                             | ncrease      | High                                                                                     | High                                                                                                                                            | Moderate                                                                                   | High                                                                                                                  |
| DHC > 1 x 10 <sup>4</sup> cells/mL c<br>(Sep 2020 baseline – Nov 20<br>cells/mL)                                                                                     |              | 4.67 x 10 <sup>3</sup> - 1.22 x10 <sup>6</sup>                                           | $3.02 \times 10^{1} - 2.52 \times 10^{5}$                                                                                                       | $3.38 \times 10^2 - 1.58 \times 10^4$                                                      | 2.2 x 10 <sup>0</sup> - 5.10 x10 <sup>5</sup>                                                                         |
| VOCs<br>(ug/L)                                                                                                                                                       | TCE          | TCE reduction (6806-10) (99.9%)                                                          | TCE reduction (15,000-< 200) (>98.7%)                                                                                                           | TCE reduction followed by rebound at 90 days (5700 - 200 - 4100) (28.2%)                   | TCE reduction (8100 E- 1,6<10) (99.9%)                                                                                |
| Degradation: Order of<br>magnitude higher than<br>background desired,<br>followed by decline.<br>(Sep 2020 baseline - Max -<br>Nov 2021 Q4 in ug/L)<br>(% reduction) | cis-DCE      | cts-PCE decrease followed by<br>rebound at 89 days (25,000-<br>1,900-4500) (82,0%)       | cis-DCE decrease followed by<br>rebound at 60 days (50,000-<br>44,000-53,000)<br>(-6%)                                                          | cis-DCE increase (4200–12,000) (-<br>186%)                                                 | cis-DCE decrease followed by<br>rebound at 180 days (5700-44-<br>1,200) (78.9%)                                       |
| (Wiedded))                                                                                                                                                           | VC           | VC increase (460-2000)<br>(-334.8%)                                                      | VC increase (<1000-2800)                                                                                                                        | VC increase (<50-75 J.)                                                                    | VC increase (<24-5100)<br>(-21,150%)                                                                                  |
| Color Code:<br>Low parameter requires<br>attention                                                                                                                   | Ethene       | Ethene increase (740–2400–2400)                                                          | Ethone increase (\$80-2000-2000)                                                                                                                | Ethene decrease (220 - 180)                                                                | Ethene increase (1-5200-5200)                                                                                         |
| Bedium - stall and/or<br>rebound in degradation; or<br>only slight improvement                                                                                       | Freon<br>113 | Freen 113 reduction followed by rebound at360 days (2000-290-410)                        | Freon 113 no change, but<br>elevated reporting limit(<1000 -<br>630))                                                                           | freon 113 reduction followed by<br>rebound at 270 days (4,300-<br>3,400 H-6,100)           | Freon 113 reduction followed by rehound at 350 days (1,500-79-860)                                                    |
| hiigh - undergoing<br>dechlorination, or improved<br>and/or acceptable<br>concentration                                                                              | PCE          | PCE no change, but elevated reporting limit (<250 - <10)                                 | PCE no change, but elevated reporting finit (<1000 - <200)                                                                                      | PCE no change, but elavated reporting limit (<50 + 43.))                                   | PCF reduction (17 - <10)                                                                                              |
| See notes on page 3.                                                                                                                                                 |              | Notes:<br>d/g<br>c/g<br>u/g<br>ft<br>WL<br>TDIP<br>PAIP<br>gal                           | downgradient<br>crossgradient<br>upgradient<br>feet<br>water level<br>top-down injection probe<br>pressure activated injection probe<br>gallons | L<br>Ibs<br>NAHCO3<br>PSI<br>Q<br>TCE<br>cis-DCE<br>VC                                     | liters pounds sodium bicarbonate pounds per square inch quarter Trichloroethene cis=1,2=dichloroethene vinyl chloride |

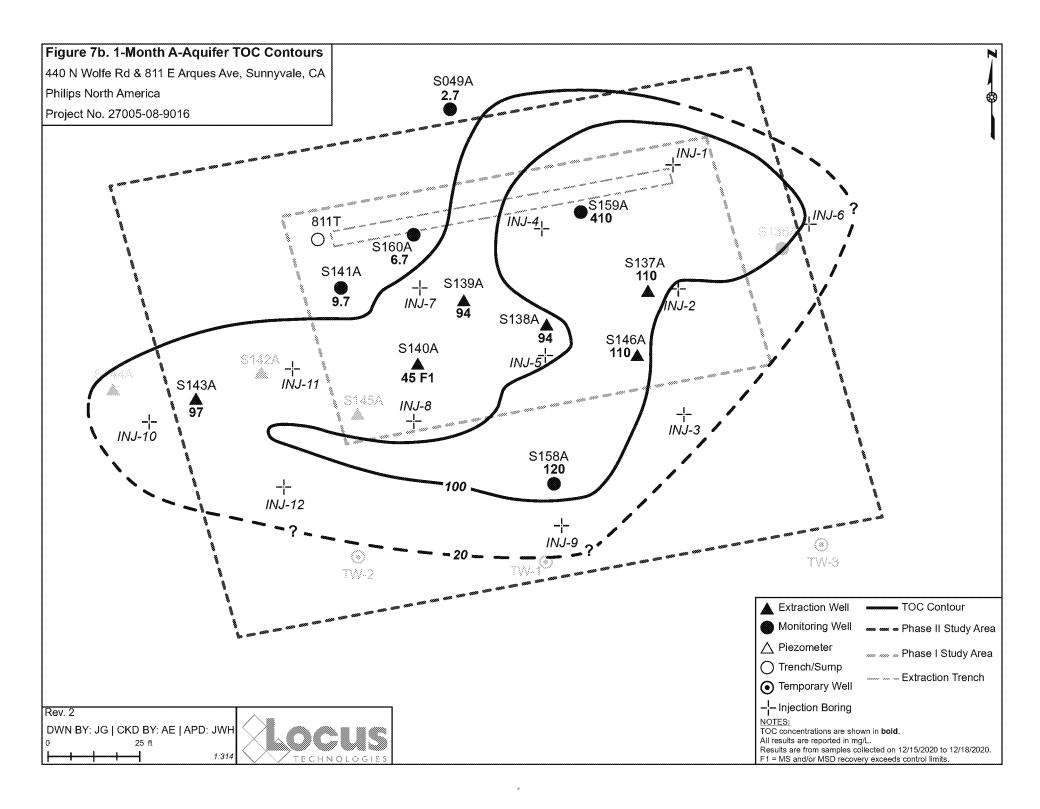


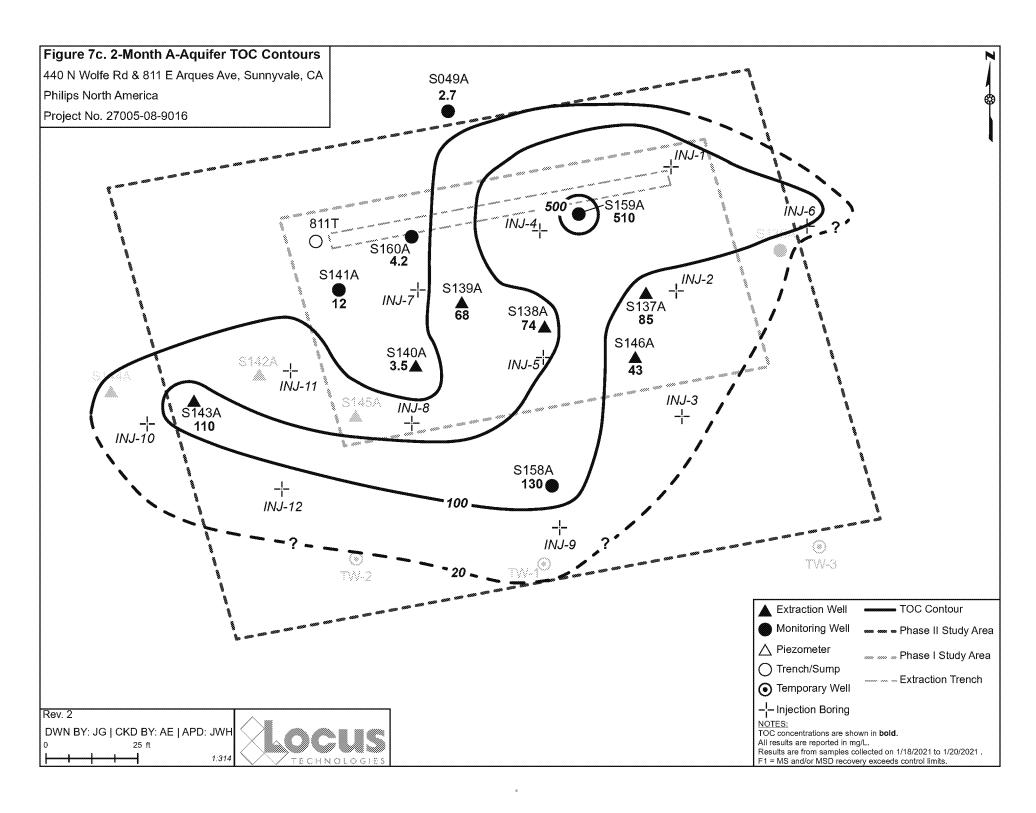


### FIGURES

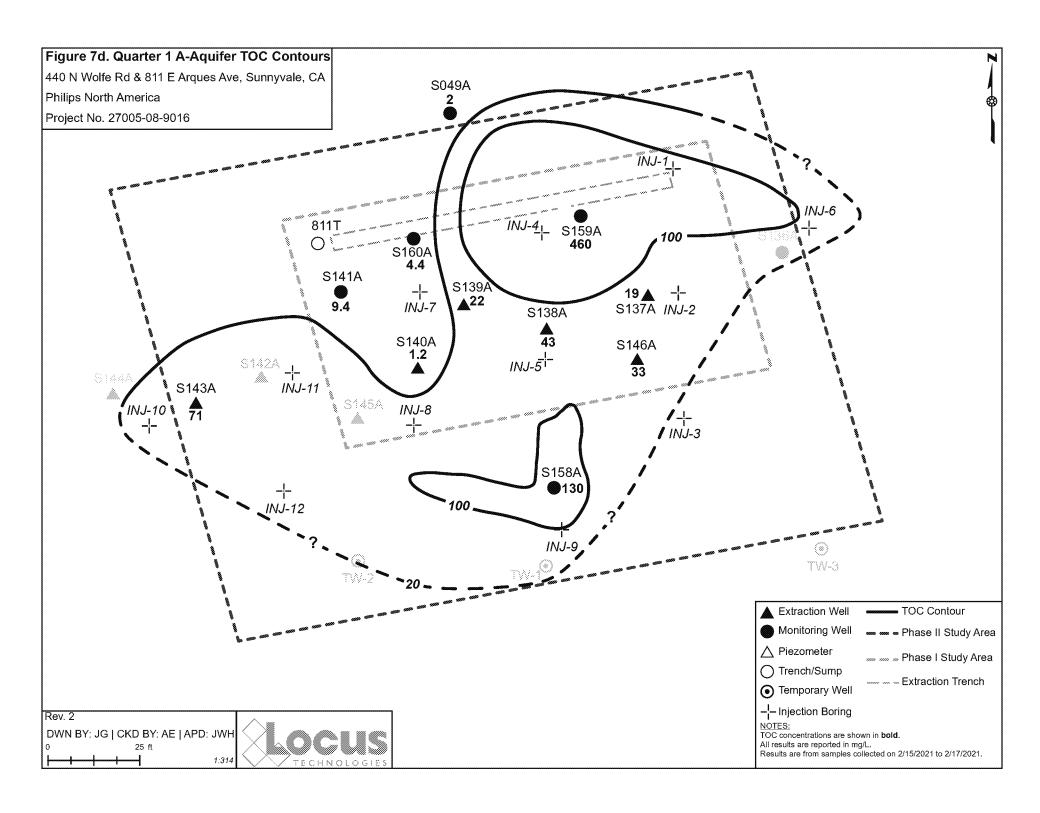

<sup>\\</sup>rm\file.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_clefiverables\Bioremediation\_phanell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_ EPA\_clean.docx (4-Aug-23)

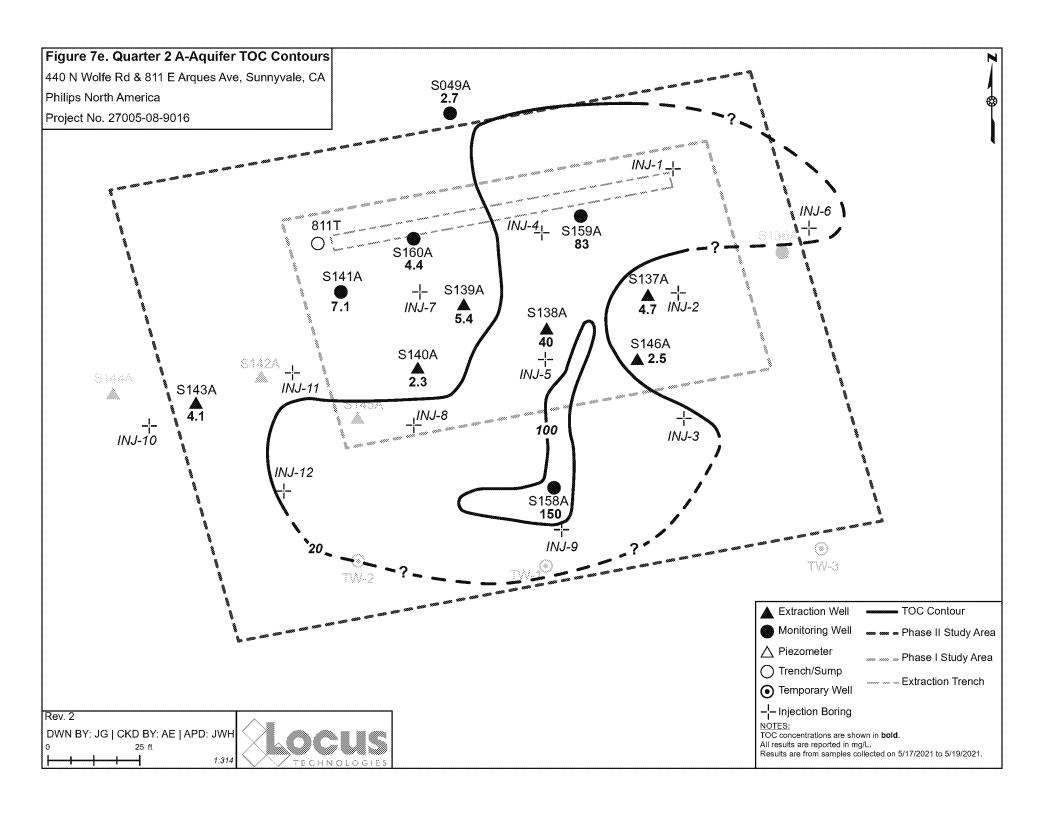


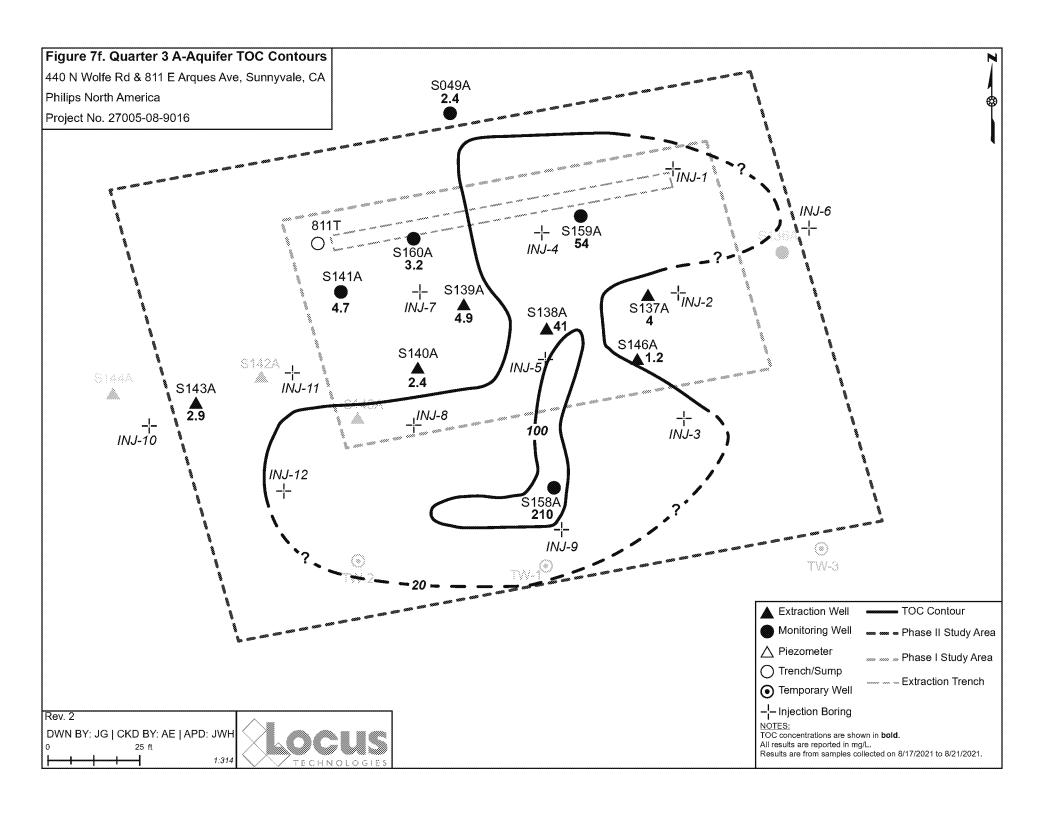



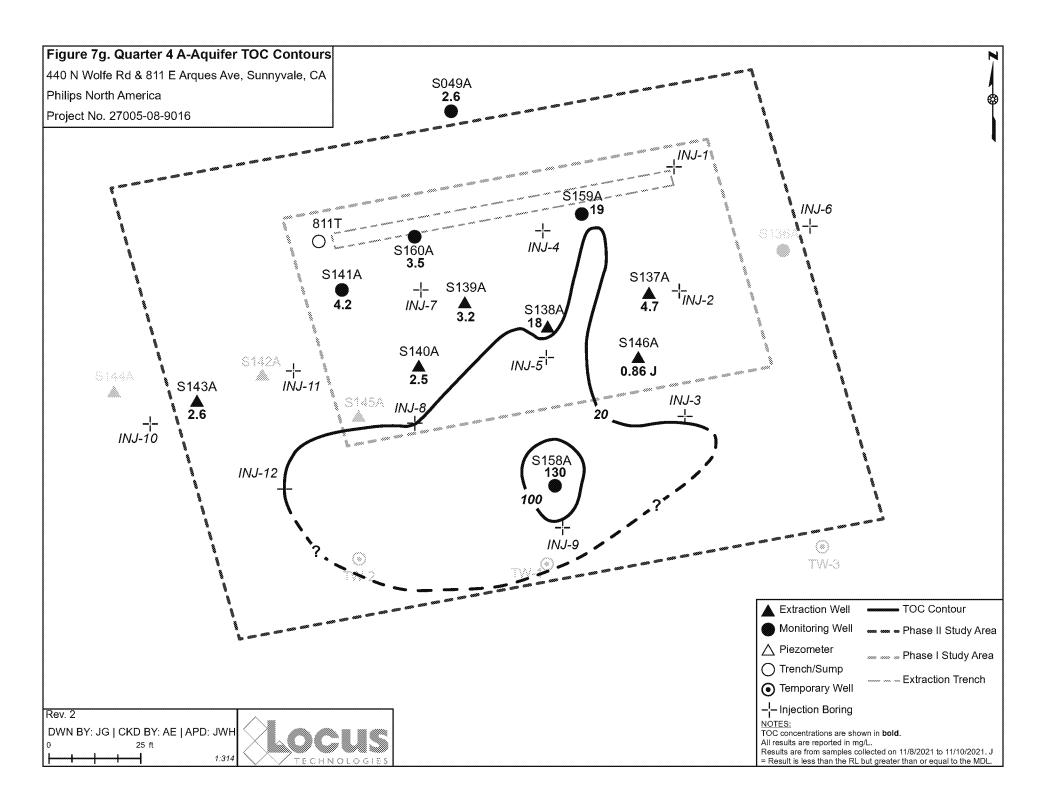



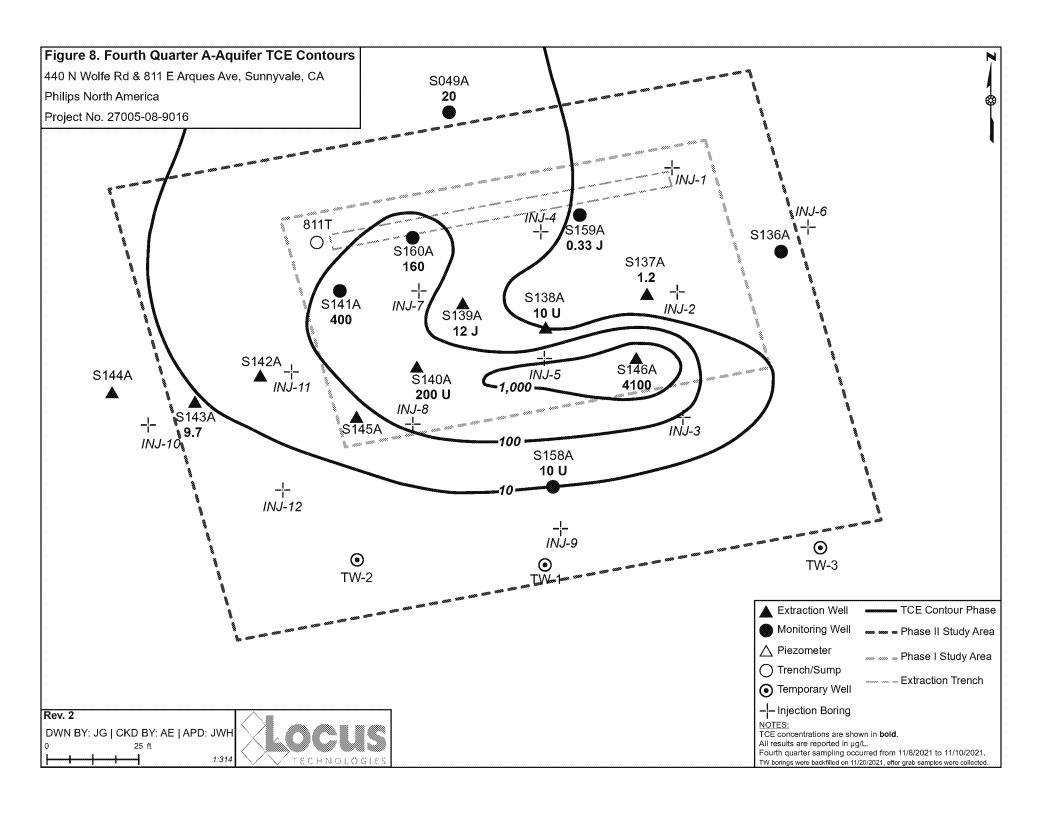



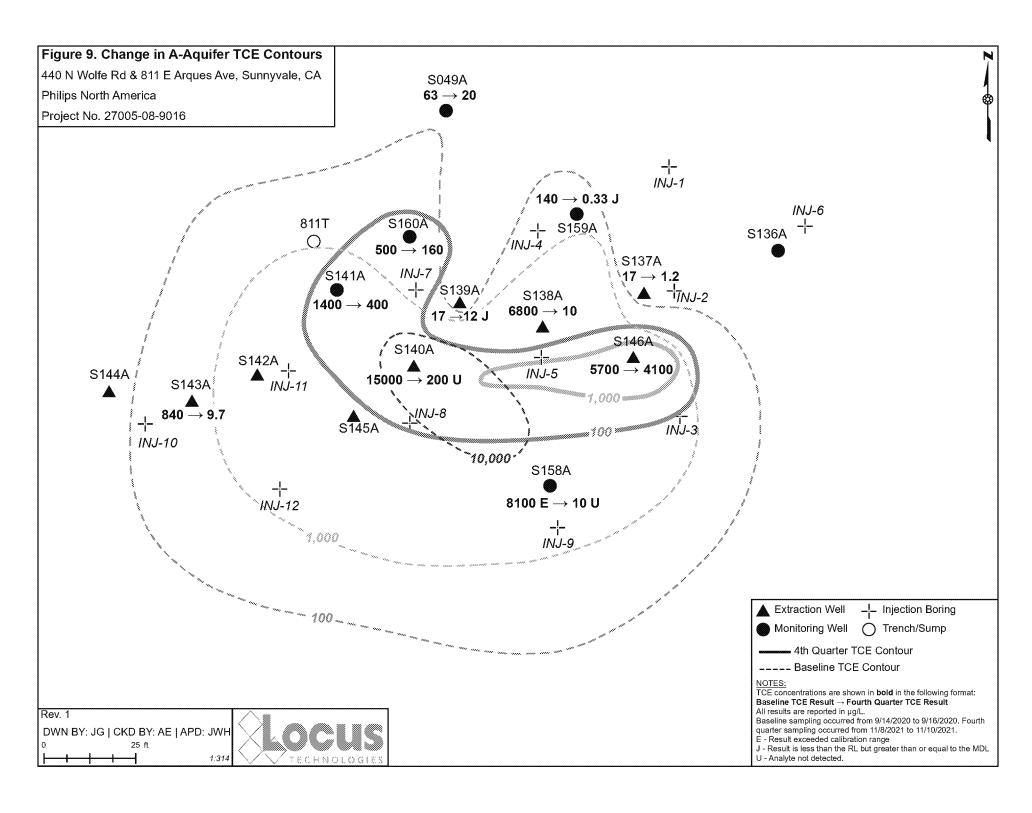
















#### APPENDIX A

## FIELD LOGS: WELL CONSTRUCTION, INJECTATE DELIVERY AND FIELD OBSERVATIONS

<sup>\\</sup>mvfile.anthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EBA\_dean.docx (5-Aud-22)



#### APPENDIX B

#### INJECTION PERIOD GROUDNWATER LEVEL PLOTS

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug-22)

<sup>©</sup> Copyright Locus Technologies, 1997–2022. All rights reserved.



#### APPENDIX C

#### POST-INJECTION MONITORING LOGS

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EPA\_clean.docx (5-Aug-22)

<sup>©</sup> Copyright Locus Technologies, 1997–2022. All rights reserved.



#### APPENDIX D

# POST-INJECTION LABORATORY ANALYSIS REPORTS (EUROFINS TEST AMERICA, PACE ANALYTICAL, ENTHALPY AND MICROBIAL INSIGHTS)

<sup>\\</sup>mvfile.anthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EBA\_dean.docx (5-Aud-22)

<sup>©</sup> Copyright Locus Technologies, 1997–2022. All rights reserved.



#### APPENDIX E

#### SOIL VAPOR METHANE MONITORING LOGS

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_ravised\_EAB\_Eval\_report\Performance\_Report\_ravised\_
EPA\_class.docx (5-Aud-23)



#### APPENDIX F

#### SOIL VAPOR LABORATORY ANALYSIS REPORTS

<sup>\\</sup>mvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Biorumediation\_phasell\12\_ravised\_EAB\_Eval\_report\Performance\_Report\_ravised\_EBA\_clean.docx (5-Auc-22)



# APPENDIX G QA/QC RESULTS ANALYSIS

<sup>\\</sup>mvfile.anthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EBA\_dean.docx (5-Aud-22)



#### APPENDIX H

#### **CONCENTRATION TRENDS PLOTS**

<sup>\\</sup>rmvfile.enthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_clefiverables\Bioremediation\_phasell\12\_revised\_EAB\_Evel\_report\Performance\_Report\_revised\_ EPA\_clean.docx (5-Aug-22)



#### **APPENDIX I**

## ADDITIONAL GROUNDWATER VELOCITY INVESTIGATION WELL DATA LOGS

<sup>\\</sup>mvfile.anthia.com\Projects\Projects\P\Philips\Arques\ASAOC\_deliverables\Bioremediation\_phasell\12\_revised\_EAB\_Eval\_report\Performance\_Report\_revised\_EBA\_dean.docx (5-Aud-22)